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Introduction:
Ultrasonic imaging currently plays an important role as an adjunct to mammography [1, 2]. Ultrasound’s real-
time nature, lack of ionizing radiation, and relative comfort for the patient make it an attractive choice for
applications which include the differentiation of fluid filled cysts and solid masses, differentiation of benign and
malignant lesions, and guidance of needle and core biopsy procedures. Recent studies have even shown the
potential of ultrasound as a screening tool, especially for pre-menopausal women whose radio-dense breast
tissue seriously limits x-ray mammography [3]. In both differential diagnosis and screening applications
however, ultrasound image quality is limited, with high levels of background clutter representing a significant
problem in many patients.

While the cause of high background clutter and poor breast image quality has not been determined with
certainty, it is widely held that acoustic velocity inhomogeneities in breast tissue cause defocusing of the
acoustic beam. This distortion manifests itself through mainlobe broadening and increasing sidelobe levels.
Numerous researchers, including the Principal Investigator, have suggested that this problem, known as phase
aberration, might be corrected through the application of compensating time delays [4-6], a combination of
delay and amplitude corrections [7], or other more complex techniques [8-10]. While proposed phase aberration
correction methods have been shown to have great potential in ex vivo or other non real-time environments,
there has been limited evidence of significant clinical image improvement. The development of a real-time
phase aberration correction system at the GE Global Research Center has shown that real-time phase correction
is possible, however in vivo results using 1.5-D arrays show contrast improvements of only about 3 dB in the
abdomen [11, 12]. This unimpressive outcome may result from imperfect algorithm optimization, or perhaps a
lower level of in vivo phase aberration than previously suspected. This latter hypothesis is supported by recent
phase aberration measurements performed at Duke University which indicate in vivo phase aberrations of only
~25ns RMS (Root Mean Squared) with a 3.5 mm FWHM (Full Width at Half Maximum) [13]. The limited
improvements of real-time phase correction, coupled with low measured aberrations, suggest that phase
aberration may not represent the major source of breast image degradation.

If phase aberration is not the primary factor limiting breast image quality, then what is? We hypothesize that
localized bright scatterers seriously degrade ultrasound images by introducing broad image clutter. Figure 1
shows single channel Radio Frequency (RF) echo data obtained from calcifications in the thyroid of a human
subject at Duke University. A focused transmit beam was used and RF data was acquired from each element in
a 1.5-D array consisting of approximately 1000 elements. Figure 1 shows data from one row of this array after
application of geometrically determined focal delays. At least three clear waveforms are visible in this data set,
with each probably resulting from a single calcification. Although summation across channels to form an RF
image line would amplify the echo coming from directly in front of the array, it would not entirely eliminate the
two other visible targets. These non-focal targets would appear in this image line as clutter, reducing image
contrast. In addition to the three dominant calcification waveforms, the data set also includes echoes from
background speckle. These background echoes also include discernable off-axis scatterers that undoubtedly
generate further clutter in the image. Note that the thyroid data presented in figure 1 is similar in appearance to
breast data obtained at Duke. In the breast bright off-axis echoes may originate from Cooper’s ligaments, highly
structured glandular tissue, calcification, fat-soft tissue interfaces, or other tissue structures.

The presence of bright off-axis scatterers and the image degradation that they cause is not surprising. It is well
known that the acoustic reflectivity of targets within the body covers many orders of magnitude. It is precisely
for this reason that manufacturers employ aggressive apodization to reduce sidelobe levels in diagnostic
ultrasound. It has also been argued that harmonic imaging is effective at improving image quality because it
further reduces sidelobe levels and therefore reduces the spatial spread of bright targets. The detrimental impact
of bright scatterers on ultrasound image quality is recognized in experimental data, physical intuition, and years
of experience in ultrasound system design.
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Figure 1: Single channel data obtained in vivo from a human thyroid. At least three bright
scatterers (likely microcalcifications) are visible. While one target lies near the focus, the other
two are off-axis and will contribute clutter to this image line. Off-axis targets are also visible
within the speckle generating background echoes. (Data courtesy Gregg Trahey, Duke
University.)

The impact of a few bright targets in an otherwise dim image has been well studied in both RADAR and
SONAR. In SONAR the detection of an intentionally stealthy submarine among many noisy ships requires
separating out a signal that is orders of magnitude below the signals from other nearby targets. A broad variety
of adaptive beamforming algorithms have been developed for this scenario. It is the goal of this research project
to evaluate the potential applicability of these methods in medical ultrasound.
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Body:
Summary of Third Year Progress:
As described in our prior progress reports, we have successfully modified the Spatial Processing Optimized and
Constrained (SPOC) algorithm [14, 15] to operate on near-field, broadband signals. In the process of writing
about this modified algorithm it became clear that our significant changes to SPOC really made it a new
algorithm, deserving a new name. Thus we have come to call our algorithm TONE for Time Domain Optimized
Near-field Estimator. We have just had our first peer-reviewed paper describing TONE accepted for publication
in IEEE Transactions on Medical Imaging [16].

During the past year we have worked to address one of the apparent limitations of the TONE algorithm.
Although TONE is able to achieve super-resolution, it seems to have some difficulty when the actual targets do
not lie at the exact locations of the hypothetical targets in the reconstruction. In this scenario TONE may
generate a large cloud centered about the true target location in the reconstructed image. To counteract this
problem we intentionally use a target model in which the response of the system to a single “target” actually
consists of the response to a number of closely spaced targets. In our early experience, the use of diffuse target
functions improves image contrast, reduces artifacts, and smoothes the image, making it much easier to
interpret. We present initial results from diffuse target TONE or dTONE below.

While the main focus of this grant has been the development and evaluation of adaptive beamforming (i.e.
TONE) we continue to explore the limits of optimization of conventional beamforming. In the past year we
have adapted the CLS beamformer design method (developed under this grant) to design not only for single
element weights (apodization), but to design for channel dependent FIR filters. While a natural evolution of our
prior work, this technique really represents a new architecture for ultrasound beamformers. This new FIR
beamformer architecture seems to offer a number of advantages over conventional beamforming. First, it is
capable of improving both image contrast and resolution, a simultaneous optimization that is normally
considered impossible. We have assessed this capability in wire target experiments and in simulated cyst
images, achieving positive results that suggest high potential for clinical impact. Secondly, the FIR beamformer
seems to be intrinsically robust to phase aberration. In extensive simulations, an aberrated FIR beamformer
outperforms an unaberrated conventional beamfomer. Thus, this algorithm may effectively solve the long-
standing problem of phase aberration in medical ultrasound. We have just submitted a paper describing this
work [17].

Both TONE and CLS require accurate models of the imaging system response. While these responses can be
determined experimentally or predicted theoretically, computer simulations represent the best long-term
solution because of their potential for high accuracy and rigor. We have just published our novel spline-based
simulation tool DELFI [18]. We have placed this tool on the MathWorks User Community where it has been
downloaded over 210 times since February. We are currently modifying the implementation of the algorithm to
improve accuracy and speed execution. We are also working with PocketSonics Inc. to implement a version of
this software on the PlayStation 3 (PS3) to enable highly detailed simulation within a reasonable computational
budget.

As our work on algorithm development and evaluation continues, we have also endeavored to perform high
quality experiments to evaluate these algorithms. While we have gained tremendous control and built a
powerful set of tools for the Sonix RP system, the transducers available for this system have not approached the
state of the art for breast imaging. Thus, while the electronics and control are excellent for our intended studies,
the poor transducers unacceptably corrupt our experiments. In the past few months we have acquired and
characterized a high frequency linear array (15-6L) made by Philips. This array is among the best in the world
for shallow, small parts imaging. We have already mapped the elements of this array and are in the process of
designing a new interconnect system that will enable transparent operation with the Sonix RP.
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We have filed a US Patent application covering TONE and dTONE, to encourage commercial implementation
and speed clinical implementation. Early licensing discussions have been positive. We have also filed a
provisional patent application on the FIR Beamformer and two companies are already in licensing discussions.

A Metric for Assessing Beamformer Performance:
The literature in ultrasound imaging, as well as SONAR and RADAR, is littered with novel beamforming
strategies, new apodization functions, and “optimal” imaging strategies. Unfortunately traditional measures of
beamformer quality, such as Full Width at Half Maximum (FWHM) of the beamplot are not well suited to
quantify the performance of medical ultrasound imaging systems, where true point targets are rare, but diffuse
targets are common. This disparity has meant that many algorithms that appear promising for point target
imaging are not useful in clinical settings. Some time ago we realized that a new measure of beamformer
performance was needed; one that was more in tune with clinical problems.

We have derived a novel metric for quantifying ultrasound image quality. Unlike traditional measures, such as
the Rayleigh resolution, which quantify point target resolution, our metric quantifies the contrast of an anechoic
cyst as a function of cyst radius. Cystic contrast is a much more relevant parameter for medical ultrasound
where point targets are rare and of little clinical importance. Our paper describing this new metric was
published in April 2007 [19].

While the Cystic contrast metric published this year is of tremendous value in comparing imaging systems and
in guiding the design of imaging systems, it is still limited in one manner. This metric only tracks the impact of
electronic noise through a Signal to Noise Ratio (SNR) on the summed echo signal. This makes it awkward to
compare the impact of apodization on SNR directly, as the current metric does not explicitly consider the SNR
on individual beamformer channels. We are now developing a new cystic resolution metric that considers
individual channel SNR, and therefore allows direct comparison across various apodization functions. This
metric allows the designer to identify “optimal” apodizations that incorporate both realistic propagation physics
and the impact of electronic noise. In our early work with this metric we have identified a tradeoff between
idealized image contrast and electronic noise; a tradeoff that we have not seen considered explicitly elsewhere.
We anticipate submitting a paper on this new metric and its implications later this year.

Conventional Beamformer Optimization:
While the TONE and dTONE algorithms (described in detail below) offer tremendous improvements in
resolution and contrast, their high computational cost presents a challenge to short-term, real-time
implementation. Further, while we know that these algorithms significantly outperform existing beamformers,
we do not know that such conventional delay and sum beamformers are “optimal” in the sense of achieving the
best possible contrast or resolution. Thus, to offer a better chance of short-term technology gains and to provide
a true benchmark for comparison, we have developed two novel techniques for optimizing conventional delay
and sum beamformer performance. These techniques, termed Linear Constrained Least Squares (LCLS) and
Quadratically Constrained Least Squares (QCLS) optimization design optimal beamformer weights using
slightly different mathematical criterion. LCLS minimizes the point spread function energy outside a given cyst
radius while maintaining a constant gain at the center of the cyst. This technique yields a closed form solution
that makes best use of the element responses, regardless of system non-idealities including limited element
angular response, near field variations, and finite bandwidth. The second technique, QCLS, also minimizes the
point spread function energy outside a given cyst radius, but constrains the energy within the cyst radius. This
technique effectively optimizes the cystic contrast metric and therefore should optimize image quality. The
theoretical underpinnings and simulation validation of these techniques are described in two papers published in
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control in February of this year [20, 21].
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The FIR Beamformer:
The LCLS and QCLS design techniques are guaranteed to yield optimal apodization profiles for a given
imaging system, however with only one parameter to adjust on each beamformer channel, we found that the
optimal performance was not always much better than conventional apodization. As we reflected upon this, we
wondered if it was possible to define a beamformer architecture wherein we could adjust multiple parameters on
each channel and thereby achieve greater gains in performance. The beamfomer architecture we envisioned is
shown below in figure 2. The upper panel depicts a conventional delay and sum beamformer where the
parameters W, X, and Y are the designed apodizations. The lower panel depicts the new FIR beamfomer
architecture in which a 3 tap FIR filter is placed on each beamformer channel, after the delay stage. (Note that
the abbreviation FIR stands for Finite Impulse Response.) In this beamformer the parameters A, B, C, … N, and
O are designed in the numerical optimization.

Figure 2: Conventional and FIR beamformer architectures. The upper panel depicts a
conventional delay and sum beamfomer with a single adjustable apodization value per channel.
The lower panel depicts the novel FIR beamformer architecture in which multiple weights are
applied to each channel. In this particular realization three filter taps are used on each channel,
although there is no theoretical limit to the number of taps that can be applied.



9

This greater degree of flexibility afforded the FIR beamformer yields dramatic, and robust increases in
performance. In our current design methodology we simply apply the QCLS design method, but design for find
multiple, temporally delayed apodization profiles to obtain channel dependent FIR filter coefficients. Because
this method forms FIR filters on each channel it is able to effectively perform frequency dependent
beamforming to achieve optimal broadband results. Figure 3 shows significant experimental improvements in
lateral resolution and contrast achievable with the FIR beamformer. Note that the FIR beamformer achieves
both a narrower mainlobe and a lower sidelobe level than conventional beamforming. These benefits have a
significant impact on cystic contrast, improving cystic contrast by over 10 dB.

Figure 3: Experimental 2D PSFs with different receive apodization functions applied. Each
image is 0.2 cm axially by 1.95 cm laterally. All images were envelope detected and log
compressed to 70 dB. The conventional windows’ PSFs suffer from high sidelobes and wide
mainlobes. The multi-tap FIR-QCLS apodization functions progressively reduce the total
sidelobe energy while maintaining a tight mainlobe in the spatial PSFs. The design cyst is shown
for reference.

We further assessed the performance improvements of the FIR beamformer by convolving the experimentally
obtained point spread functions with simulated cysts within a speckle generating background. The simulated
images, shown below in figure 4, show an appreciable improvement in cystic contrast with FIR beamforming.
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Figure 4: Simulated B-mode images of a 1.0 mm diameter cyst embedded in speckle using the
experimental PSFs. All images are log compressed to 30 dB and show a 5 mm by 5 mm area
surrounding the anechoic cyst. The 1.0 mm diameter cyst is shown for reference.

TONE Progress:
The region of tissue to be imaged region (the region of interest or ROI), is subdivided into a collection of
hypothetical targets at arbitrary positions, as shown in figure 5. Finer target placement yields finer final image
resolution but entails higher computational costs. For each hypothetical target in the ROI, we model the signal
received by the array for that specific point (i.e., the spatial responses). These spatial responses can be
determined using a theoretical model, computational model, or can be extracted from experimental data. For
every hypothetical target, the spatial impulse response is a matrix of dimensions TxN, where T is the number of
samples in the time dimension and N is the number of elements in the array. After the spatial impulse responses
for all the hypothetical targets have been calculated, these responses are reshaped to form an array manifold
matrix V  of dimensions NTxLP, where L and P are the numbers of hypothetical sources in the range and lateral
dimensions, respectively. The observation model then becomes:

fVx = (1)

where T
Nxxxx ][ 21 =  is the data received by the N-element array and f  is the LPx1 target amplitude

vector, whose elements are the amplitudes of the hypothetical targets located in the ROI. x is a NTx1 vector that
is obtained by concatenating the Tx1 channel data ix . Given x  and V , TONE matches the received data x  to

the signal model to solve for the position and intensity of the real sources (i.e., the f  vector). If there is no real
source at a particular location within the ROI, then the element of f  that corresponds to that location should be
zero. Mathematically, this is accomplished by solving the following maximum a posteriori (MAP) optimization
problem:
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where fl are elements of f . A solution for the MAP optimization problem is found using the following iterative
procedure described by K. W. Lo.

Figure 5. Schematic diagram of TONE.

A series of computer simulations were performed in Matlab to test the potential of TONE. These simulations
and their results are described in detail below.

Single Point Target Simulations
A point target was placed directly in front of the transducer at a depth of 20.1mm. We simulated a 33 element
linear array operating at 5 MHz with element spacing of 150µm. Signals were sampled at 40 MHz. Plane wave
transmission was used for conventional beamforming and SPOC. Conventional beamforming was applied on
the received RF data using Hann apodization and dynamic receive focusing. For SPOC, we discretized the
image region as a setof hypothetical targets separated 20µm in range and 100µm in azimuth.
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        (a)                     (b)

     (c)                 (d)

     (e)
Figure 6. Point target simulations. The point target is depicted in (a); (b) shows conventional
delay-and-sum beamforming, whereas images (c) to (e) show SPOC with different levels of
electronic noise.

Multiple Point Target Simulations
A series of point targets were distributed within a 4x5mm region in range and azimuth, respectively. In this
case, we simulated a 33 element linear array operating at 5 MHz with element spacing of 150µm. The final
sampling frequency was set at 40 MHz. A plane wave was used on transmit for both conventional beamforming
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and TONE. Conventional beamforming was applied on the received RF data using Hann apodization and
dynamic receive focusing.

For TONE, we discretized the image region in a set of hypothetical target locations separated 20µm in range
and 120µm in azimuth. The positions of the points were chosen so that some, but not all coincide with the
positions of the hypothetical targets. Results are encouraging in that they show TONE is robust to differences
between true target location and model target location.

  (a)       (b)

    (c)

Figure 7. Results obtained simulating a series of wire targets. The wires are depicted in (a); (b)
shows conventional delay-and-sum beamforming, whereas (c) show TONE.

Anechoic Cyst Simulation
A 1mm radius anechoic cyst was placed in front of the array and surrounded by ultrasonic scatterers randomly
distributed within the image region. Scatterer amplitudes followed a Gaussian distribution with zero mean and
standard deviation of one. Simulation methods are the same of those described in the previous section, except
that the hypothetical source sampling was reduced to 100µm in azimuth. Again, the positions of the scatterers
do not necessarily coincide with the position of the hypothetical sources. Results indicate that SPOC is robust in
the presence of large numbers of targets placed at intervals closer than the conventional resolution.
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  (a)          (b)

       (c)
Figure 8. Results obtained simulating an anechoic cyst surrounded by scatterers. The cysts is
depicted in (a); (b) shows conventional delay-and-sum beamforming, whereas (c) show TONE.

Experimental results
We also performed a series of experiments using a commercially available Philips SONOS 5500 imaging
scanner and a series of 5 wires suspended in a water tank. The wires are 20µm in diameter and spaced roughly
2mm apart. The top panel of figure 5 shows the image generated by the Philips scanner, whereas the bottom
panel shows the TONE reconstructed image. In the case of TONE we discretized the image region in a series of
hypothetical targets separated by roughly 20µm in both range and azimuth. Results indicate that TONE can
perform robustly with real experimental data. Further work is ongoing to test TONE in excised tissues.
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Figure 9. Comparison between conventional beamforming (top) and TONE [formerly called
SPOC] (bottom) on a set of 5 wires suspended within a water tank. The wires are 20µm in
diameter.

Diffuse Target TONE (dTONE):
One of the limitations of TONE is that it assumes that the imaged targets lie at discrete locations within the
body, an assumption that is clearly not true in practice. While the impact of this assumption can be mitigated to
some extent by more finely sampling the hypothetical target grid, this approach is extremely costly
computationally. Further, in our experience it is not clear that the costs incurred result in a significantly better
image. Because of the coherent nature of echo summation, a true target lying between two hypothetical target
locations might be best modeled by TONE using a large cloud of scatterers spread over a large region of the
reconstructed image.  This is both unsightly and not useful. To deal with both of these issues we have developed
a new variant of TONE called diffuse target TONE or dTONE.

dTONE reconstructs the image in exactly the same manner as TONE, but by using a slightly array manifold
matrix V  it is able to robustly account for targets that do not lie precisely on the reconstruction grid. dTONE
alters the array manifold matrix by assuming that the signal from one hypothetical target really originates from
a diffuse, amplitude weighted group of targets centered about the hypothetical target location. This approach is
more computationally costly in the formulation of the problem, i.e. computation of the array manifold and later
eigenvalue decompositions, but has absolutely no impact on the computational cost of the reconstruction. Since
we anticipate that the array manifold formation and eigenvalue decompositions will be performed offline, this
algorithm represents an elegant way to improve performance. When we reconstruct a dTONE image we
represent the targets from each hypothetical location using a bi-cubic spline. This approach yields a smoother
and more pleasing image. An experimental dTONE image is compared with a TONE image below in figure 10.
The dTONE image has less clutter and is visibly smoother.
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Figure 10. Comparison between experimentally formed TONE and dTONE images.

Simulation Tool Development:
The performance of TONE depends greatly upon the quality of the system model it applies. In our initial
simulations we modeled the system using analytical methods, or using the well known FIELD program written
by Jørgen Jensen. Unfortunately FIELD is quite slow when computing full 3D spatial impulse responses.
Further, because FIELD works entirely on sampled data sets it is prone to artifacts from undersampling. We
have implemented the Tupholme-Stepanishen method (the core approach used in FIELD) in a new piece of
code we call DELFI. The DELFI code uses cubic spline representations of the transmitted pulse, and the
transmit and receive spatial impulse responses. This approach avoids the potential sampling difficulties of
FIELD. It is also significantly faster at computing space-space-space responses at an instant in time. These sort
of responses are critical in much of our research and the 25 fold increase in speed for DELFI is of great
significance. Our paper describing the DELFI code was published this May [18]. Some results from this paper
are shown below in figure 11. Note that for space-space responses DELFI is significantly faster to achieve a
given accuracy level. For space-time responses DELFI is somewhat slower, but can achieve high accuracy at
significantly lower sampling rates. We placed the final version of our DELFI code on the Mathworks web site
just after our paper was accepted for publication. This code has been downloaded over 200 times since then.
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Figure 11: Simulation results comparing the speed and accuracy of DELFI and FIELD (both
rectangular and triangular computational elements) for space-space and space-time responses.
Note the high accuracy achieved for DELFI at even low sampling rates.

While DELFI is a powerful and computationally efficient tool, the cost of performing detailed simulations of
2D transducer arrays still requires the use of massive computer clusters or even supercomputers. Our team is
now collaborating with a local startup (PocketSonics, Inc. in which the PI is a founder) to port the DELFI code
to the PlayStation 3. The Cell Processor used by the PS3 represents an ideal low cost platform for these
embarrassingly parallel simulations. While this project requires a significant algorithmic change to enable
implementation with single precision floating point arithmetic, we are hoping to get prototype software running
this summer.

Experimental Platform Development:
As we near the end of the life of this grant we have shifted our experimental work almost entirely to the
Ultrasonix Sonix RP. The Sonix RP is a highly programmable research platform built around a clinical
ultrasound imaging system. We acquired this system in June 2006 and have since implemented a broad range of
tools:

* Python scripting interface for Ultrasonix, to allow interactive control of all transmit/receive sequences without
recompilation, for rapid experiment turnaround.
* Synthetic receive control - ability to receive single element RF data on successive transmits.
* Synthetic transmit control - ability to transmit on single elements.
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* Automated full synthetic transmit/receive, this lets us capture full synthetic data sets from a 128-element
transducer in 30 seconds.
* Automated transducer characterization in conjunction with hydrophone.
* Matlab interface for execution and analysis of simple sequences in a single script.
* Automated averaging of repeatedly captured data to improve SNR.

While we have made tremendous progress in developing tools for system control and data acquisition, our
experimental progress is hampered by the poor quality of the transducer arrays currently sold for the Sonix RP.
These transducers exhibit poorer element angular response, poorer element spacing, and poorer bandwidth than
state of the art transducers. To circumvent this limitation we are integrating a Philips linear array probe with the
Sonix RP. This array is at the state of the art for small parts imaging and when integrated, will be recognized by
the Sonix RP as native and thus available for real-time imaging and programmed data acquisition.

Another experimental system, not described in the original proposal, is a fully custom system developed in a
collaboration with two other investigators at the University of Virginia (John A. Hossack and Travis N.
Blalock.) A second generation of this system is being assembled. This second generation system will utilize a
3600 element 2D array and will operate at a 5.0 MHz center frequency. Data from all channels will be acquired
in parallel in real-time, however only four real samples will be acquired by each channel. Although the data
acquisition of this system is certainly limited in some ways, we believe that this system will provide an
excellent testbed for TONE. In the coming months as this system becomes operational we will acquire data to
test the viability of TONE on 2D arrays.

Corporate Interactions:
Our work on TONE has great potential, but presents great challenges. We have been assisted in these efforts
through a number of valuable corporate interactions.

Our experimental work was originally aided through technical support and equipment donations from Philips
Medical Systems. Our transition to the Sonix RP system has of course been supported by UltraSonix.

TONE is extremely challenging to implement computationally and we have worked closely with Interactive
Supercomputing to test the algorithm. They have provided technical support to enable the transition of our
algorithms to their Star-P MATLAB parallelization software. Interactive Supercomputing has also provided us
with free CPU cycles on their high-end cluster.

One of the most exciting corporate collaborations in this project has been our ongoing interaction with
InnerVision Medical Technologies. InnerVision is currently developing an ultrasound platform that has both the
data acquisition capabilities and computational capabilities to implement TONE clinically. The University of
Virginia Patent Foundation is actively negotiating licensing terms with InnerVision and both sides have
indicated that they expect to achieve a mutually agreeable conclusion in the next few months.

Transition of DELFI to the PS3 with the support of PocketSonics Inc.
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Key Research Accomplishments:
• Developed and published a new metric to quantify ultrasound beamformer performance
• Currently developing another new metric that accurately combines the effects of cystic contrast resulting from
the system point spread function and noise on individual beamformer channels.

• Developed and published two new methods for optimizing beamformer apodization functions (LCLS and
QCLS design methods.)

• Developed a new ultrasound beamformer architecture (FIR beamformer) that achieves dramatic improvements
in image contrast and resolution.

• Developed, tested, and published (accepted) a new adaptive beamformer, the TONE algorithm.

• Developed and have begun testing a variant of TONE, dTONE which yields smoother images with higher
contrast and fewer artifacts.

• Developed and published a new approach to ultrasound simulation (DELFI).

• Developed extensive experimental tools for imaging and data acquisition using the Sonix RP.
• Currently integrating a high frequency linear array probe with the Sonix RP to improve image and data
quality.

• Built and expanded collaborations with numerous corporations including Philips Medical Systems,
UltraSonix, InnerVision, and PocketSonics.
• Active licensing negotiations ongoing.
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Reportable Outcomes:
Papers:

Guenther, D.A., and W.F. Walker, “Broadband Optimal Contrast Resolution Beamforming,” submitted to IEEE Trans. Ultrason.
Ferroelec. Freq. Contr., May 2007.

Viola, F., M.A. Ellis, and W.F. Walker, “Time-Domain Optimized Near-Field Estimator for Ultrasonic Imaging: Initial
Development and Results,” accepted to IEEE Trans. Med. Imaging.

Ellis, M., D.A. Guenther, and Walker, W.F., “A Spline-Based Approach for Computing Spatial Impulse Responses,” IEEE Trans.
Ultrason. Ferroelec. Freq. Contr., vol. 54, no. 5, pp. 1045-1054, May 2007.

Ranganathan, K. and W.F. Walker, “Cystic Resolution: A Performance Metric for Ultrasound Imaging Systems,” IEEE Trans.
Ultrason. Ferroelec. Freq. Contr., vol. 54, no. 4, pp. 782-92, March 2007.

Guenther, D.A., and W.F. Walker, “Optimal Apodization Design for Medical Ultrasound using Constrained Least Squares. Part I:
Theory,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 54, no. 2, pp. 332-42, Feb. 2007.

Guenther, D.A., and W.F. Walker, “Optimal Apodization Design for Medical Ultrasound using Constrained Least Squares. Part
II: Results,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 54, no. 2, pp. 343-58, Feb. 2007.

Conference Abstracts:
K. Owen and W.F. Walker, “A Novel Method for Designing and Fabricating Single Piston Transducers with Extended Depth of
Field,” submitted to the 2007 IEEE Ultrasonics Symposium.

M.A. Ellis, F. Viola, and W.F. Walker, “Diffuse Targets for Improved Contrast in Beamforming Adapted to Target,” submitted to
the 2007 IEEE Ultrasonics Symposium.

D.G. Guenther and W.F. Walker, “Optimal Contrast Resolution Beamforming,” submitted to the 2007 IEEE Ultrasonics
Symposium.

D.A. Guenther and W.F. Walker, “Receive Channel FIR Filters for Improved Contrast in Medical Ultrasound,” 2007 SPIE
Medical Imaging Symposium.

F. Viola, M.A. Ellis, and W. F. Walker, “Near-Field, Broadband Adaptive Beamforming for Ultrasound Imaging,” Fortieth
Annual Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, California, USA, 2006.

M.A. Ellis and W.F. Walker, “Piecewise-Linear Approximation for Improved Accuracy in Near-Field Ultrasound Simulation,”
2006 IEEE Ultrasonics Symposium.

F. Viola, M.A. Ellis, and W.F. Walker, “Ultrasound Imaging with Beamforming Adapted to Target,” 2006 IEEE Ultrasonics
Symposium.

D.A. Guenther, Ranganathan, K. and W.F. Walker, “Design of Apodization Profiles Using a Cystic Resolution Metric for
Ultrasound,” 2005 IEEE Ultrasonics Symposium.

Viola, F. and W.F. Walker, “Adaptive Signal Processing in Medical Ultrasound Beamforming,” 2005 IEEE Ultrasonics
Symposium.

Viola, F., and W.F. Walker, “Adaptive Beamforming for Medical Ultrasound Imaging,” U.S. Dept. of Defense Breast Cancer
Research Program Era of Hope 2005 Meeting, June 2005.

Patent Activity:
“System and Method for Adaptive Beamforming for Image Reconstruction and/or Target/Source Localization,” W.F. Walker and
F. Viola, U.S. Patent Application filed September 19, 2006.

 “An Improved Ultrasound Beamformer Using Channel Dependent FIR Filters,” G.A. Guenther and W.F. Walker, provisional
patent filed October 2, 2006.

 “System and Method for Application of a Resolution Metric and Design for Apodization Profiles for Optimal Cystic Contrast,”
D.A. Guenther and W.F. Walker, patent disclosure filed September, 2005. (abandoned)

 “Adaptive Beamformiong for Medical Ultrasound Imaging,” F. Viola, and W.F. Walker, patent disclosure filed 2005.
(superceded by full application)

Software:
DELFI – A cubic spline based code for simulating spatial impulse responses. Available for download at:
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=13970
Downloaded 227 times as of June 18, 2007.
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Conclusions:
As we enter the final months of this grant (a no-cost extension has been requested), we feel that we have made
some significant advances that offer a real potential for clinical impact. We will be pursuing follow on funding
to evaluate TONE, dTONE, and QCLS in human tissues. We are hopeful that this work will advance the state of
the art in breast cancer detection and diagnosis.
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ABSTRACT

This paper proposes a novel receive beamformer architecture for broadband 
imaging systems that uses unique finite impulse response (FIR) filters on each channel.  
The conventional delay-and-sum (DAS) beamformer applies receive apodization by 
weighting the signal on each receive channel prior to beam summation.  Our proposed FIR 
beamformer passes the focused receive radio frequency (RF) signals through multi-tap FIR 
filters on each receive channel prior to summation.  The receive FIR filters are constructed 
to maximize the contrast resolution of the system’s point spread function (PSF).  We 
describe an array pattern synthesis technique that utilizes a priori knowledge about the 
imaging system to model the transmit/receive PSF.  The broadband FIR beamformer 
produces PSFs with narrower mainlobe widths and lower sidelobe levels than PSFs 
produced by the conventional DAS beamformer. 

We present simulation results showing that FIR filters of modest tap lengths (3-7) 
can yield marked improvement in image contrast and point resolution.  Specifically we 
show that 7-tap FIR filters can reduce sidelobe and grating lobe energy by 30dB and 
improve contrast resolution by as much as 20dB compared to conventional apodization 
profiles.  We investigate the effects of phase aberration and show simulation results that 
the multi-tap FIR beamformer outperforms the conventional DAS beamformer by 8 to 12 
dB even in the presence of aberration characterized by a root-mean-square strength of 28 
ns and a full-width at half-maximum correlation length of 3.6 mm.  We show experimental 
results wherein multi-tap FIR filters decrease sidelobe energy in the resulting 2D PSF while 
achieving a narrow mainlobe.  We also show results where the FIR beamformer improves 
the contrast to noise ratio (CNR) in simulated B-mode cyst images by more than 4 dB.  Our 
algorithm has the potential to significantly improve ultrasound beamforming in any 
application where the system response is well characterized.  Furthermore, this algorithm 
can be used to increase contrast and resolution in one-way beamforming systems such as 
acousto-optic and opto-acoustic imaging. 

INTRODUCTION

Weighting individual receive channels can significantly change the sensitivity and 

resolution of the delay-and-sum (DAS) beamformer.  Conventional apodization functions like 

the rectangular, Bartlett, and Hamming windows offer a tradeoff between the beamformer spatial 

impulse response’s mainlobe width and sidelobe levels [1].  Because receive channel weighting 

changes the shape of the overall system PSF, apodization greatly affects the contrast and 

mailto:dag2m@virginia.edu
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resolution of the final output image.  The rich history of array pattern synthesis includes volumes 

about the design and optimization of apodization functions.  For example, Nuttall produced a 

window that minimized the maximum sidelobe level [2] and Er et al. derived techniques to 

achieve array patterns that minimized the mean squared sidelobe energy [3]-[5].  Adams 

developed an algorithm to calculate a window that achieved the optimal tradeoff between peak 

sidelobe level and total sidelobe energy [6].  He also plotted peak sidelobe level versus sidelobe 

energy to easily visualize and compare the performance of different windows. Cox et al.

determined the optimal weighting function that maximized array gain in the presence of white 

noise to achieve “superdirectivity” [7].  The latter required assumptions about the noise field 

statistics. Almost all of the previously mentioned optimal beamforming techniques share a 

common goal: to increase sensitivity and directivity of the beamformer.  The apodization 

functions are “optimal” given certain performance criterion.  However, these previous methods 

are limited in their application to general broadband beamforming systems since they rely upon 

far-field, narrowband assumptions.

Docolo and Moonen thoroughly described designing apodization functions for 

broadband, nearfield beamformers using eigenfilters and a total least squares error criterion [8].  

Korompis et al. developed a broadband beamformer with maximum energy and arbitrary spatial 

and frequency constraints [9].  Both of these methods provided novel design procedures for 

synthesizing broadband array patterns, but their applicability to conventional ultrasound is 

limited since the algorithms were intended for synthesizing beampatterns for communications 

and passive microphone arrays, not for constructing pulse-echo beampatterns for imaging low 

echogenicity targets. 
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Conventional ultrasound imaging systems use delay-and-sum beamforming strategies and 

apply dynamic receive apodization to control f/# with depth, decrease sidelobes, and to suppress 

edge effects resulting from a finite aperture size.  Optimal apodization design techniques like [8] 

and [9] above have only recently been applied to medical ultrasound.  Schwann et al. [10] used 

an assortment of resolution criteria to optimize frequency-dependent receive apodization.  

Ranganathan and Walker [11] used a minimum sum squared error technique to develop 

apodization functions for arbitrary system design.  Their method is useful in aiding the design of 

prototype systems, but suffers from the lack of a quantitative measure detailing how system 

performance changes with respect to a deviation in system parameters.  Our group previously 

described an aperture design method using constrained least squares to produce spatial impulse 

responses that maximized contrast resolution according to a general cystic resolution metric [12], 

[13].  This method utilizes a priori information about the system in order to optimize the 

beamformer’s spatial impulse response characteristics.  Therefore, whereas the DAS beamformer 

is considered data independent, this method incorporates system characteristics to improve the 

DAS beamformer’s performance. 

In this work we replace the dynamic receive aperture weights with dynamic finite 

impulse response (FIR) filters.  The FIR filters on each channel are unique, and the filter weights 

are chosen to maximize contrast resolution.  A simplified depiction of the conventional DAS 

beamformer and the proposed multi-tap FIR beamformer is shown in figure 1.  Note that 

apodization is applied in both architectures after the dynamic focal delays have been applied, 

thus all RF data coming into the apodization portion of the beamformer are focused.  The 

proposed multi-tap FIR beamformer increases system complexity, but should be relatively easy 

and inexpensive to implement in modern system hardware.  
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The proposed beamformer architecture using FIR filters on each receive channel is well 

known and utilized in the RADAR signal processing literature [14]-[16].  Furthermore, dynamic 

FIR filters have been used extensively to increase sensitivity and directivity in adaptive RADAR 

array processing [17], [18].  Our proposed FIR beamformer is different from these earlier 

approaches in that our beamformer is data independent and the filter tap weights are completely 

deterministic given the a priori system model.  Furthermore, we are not limited by nearfield, 

narrowband assumptions and do not require estimation of the receive signal second order 

statistics.  The FIR beamformer utilizes our previous apodization design method that optimizes

the weights of the conventional DAS beamformer to maximize contrast resolution [12].  In this 

paper we extend that algorithm to calculate the optimal weights for the FIR filters utilizing a 

general cystic resolution metric.  Our beamformer can be readily adapted to existing commercial 

architectures and also offers the potential to significantly improve the point resolution and 

contrast of one-way beamforming systems [19]-[21], some novel passive ultrasound systems 

[22]-[24], as well as improve performance of the spatial matched filter beamformer [25].

THEORY

Our goal is to determine optimal dynamic filter tap weights for the receive FIR 

beamformer depicted in figure 1.  We model a pulse-echo broadband imaging system; however, 

the algorithm can be adapted to model a passive, receive only system as well as a 

narrowband/farfield array processor.  The proposed beamformer is specially suited for medical 

ultrasound since it maximizes contrast resolution of anechoic targets, but applies to general array 

pattern synthesis since it produces PSFs with narrow mainlobes and low sidelobes.
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A. Linear algebra formulation of the spatial point spread function

The sensitivity field for a transducer during pulse-echo imaging can be expressed as the 

product of a propagation matrix, S, and a set of aperture weightings, w.  The propagation matrix 

uses superposition to describe the contribution of each transducer element at each field point at 

an instant in time.  For our formulation, S is a function of the transmit aperture weights, the 

excitation pulse, and the individual element impulse responses of the transmit and receive 

elements.  Focusing on transmit and/or receive using our formulation is accomplished by 

adjusting the instant in time at which to capture the spatial response for an individual element.

We refer the reader to [12] for a more detailed analysis of the linear algebra formulation of the 

PSF and present a brief review of the major results below.

The two way pulse echo propagation matrix, S, for a fixed transmit aperture and a n

element focused receive aperture at a total number of p points in three dimensional space is: 
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where si,j is the contribution of the jth receive element at the ith point in three dimensional space.  

The receive aperture weighting function, w , for each of the n elements used on receive can be 

written in vector form as:

w = w1 w2 w3 L wn[ ] T ,          (2)

where T denotes the vector transpose operation.  Using (1) and (2), we can now write the 

complete two-way pulse echo system PSF, P , as follows:

SwP = , (3)
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the propagation matrix multiplied by the receive weighting vector.  Note that this results in the 

one dimensional column vector, P , of length p the total number of points in three-dimensional 

space where the system PSF is measured.  

To expand our formulation to include receive channel FIR filters, we recognize that the 

final spatial PSF of the FIR beamformer is a linear superposition of multiple dynamically 

focused 2-way PSFs.  We create a new propagation matrix, SFIR , which is a simple combination 

of the propagation matrices associated with each dynamic receive focus.  The number of 

propagation matrices included corresponds to number of FIR filter taps, k.
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where szk,i,j is the contribution of the jth element at the ith point in space for the kth receive focus 

(tap).  Adequate spatial and temporal sampling of the three dimensional PSF yields huge 

propagation matrices, and therefore for this paper we have limited our analysis to two spatial 

dimensions, azimuth and range, and assume a temporal sampling rate of 40 MHz for the FIR 

filters.  The receive FIR filter taps, FIRw  , can also be written in vector form as:

wFIR = wz1,1 wz1,2 wz1,3 L wz1,nL wzk,1 wzk,2 wzk,3 L wzk,n[ ] T ,                                     (5)

where jzkw ,  is the weight applied for the kth receive focus (tap) on the jth receive element.  

Using (4) and (5), the complete two-way pulse echo system PSF for the receive channel FIR 

beamformer using k-taps on each channel is written as follows:



Manuscript submitted for publication in IEEE Transactions UFFC May 29th, 2007

7

FIRFIRFIR wSP =   .                                                                                                         (6)

B. Algorithm for computing the FIR filter taps

The cystic resolution metric described in [26] quantifies the contrast at the center of an 

anechoic cyst embedded in a speckle generating background.  Note that this metric measures 

contrast at a specific point in space (the center of the cyst) at an instant in time.  This is a 

different parameter than the overall cystic contrast computed from a B-mode image [27].  We 

refer to the cystic resolution metric’s result as a “point contrast” to avoid this confusion.  From 

[28] the point contrast of the center of a cyst relative to the background, neglecting electronic 

noise, is defined as:

tot

out

E

E
C = , (7)

where outE  is the PSF energy outside the cyst and totE  is the total PSF energy.  The contrast 

resolution metric identifies the contribution of specific points in the PSF to the overall contrast.  

Note that if all of the PSF energy lay within the cyst, C would be 0, indicating the best possible 

contrast.  On the other hand, if most of the PSF energy lies outside the cyst, C approaches a value 

of 1.  Therefore, when we present contrast curves as a function of cyst radius, a more negative 

dB value indicates better performance.  

The FIR filter design algorithm uses the above cystic resolution metric to formulate a 

least squares minimization problem with a quadratic constraint.  We call the resulting weights 

quadratically constrained least squares (QCLS) apodization profiles [12].  Our algorithm utilizes 

the linear algebraic representation of the PSF presented above.  If we describe the PSF for all 

spatial points in the final image, we can develop a full set of optimal dynamic receive aperture 
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weights for the FIR receive beamformer in figure 1.

We can optimize contrast according to (7) by minimizing the ratio of PSF energy outside 

a specified cyst boundary to the total PSF energy.  This is equivalent to minimizing the ratio of 

PSF energy outside the cyst to PSF energy inside the cyst:

2
min wSout

w
     subject to the quadratic constraint  1

2 =wS in   ,              (8)

where 
2•  denotes the square of the 2l -norm, outS  is the propagation matrix for all the spatial 

points of the PSF lying outside the cyst boundary, and inS is the propagation matrix for all the 

spatial points of the PSF lying inside the cyst boundary.  Note that the quadratic constraint 

minimizes the ratio of PSF energy outside the cyst to PSF energy inside the cyst.  Drawing upon 

[28], the optimal receive aperture weighting satisfying the quadratic constraint is the eigenvector, 

eigw , corresponding to the minimum eigenvalue resulting from the generalized eigenvalue 

decomposition problem of out
T
out SS  and in

T
inSS .  One of the main advantages of the QCLS 

technique is that no matrix inversion is required to solve for the optimal apodization profile.  The 

generalized eigenvalue problem [29] for a matrix pair (A, B) both n by n matrices, is finding the 

eigenvalues, λk , and the eigenvectors, xk ≠ 0, such that:

Axk = λkBxk . (9)

SIMULATION RESULTS

A. Comparing the FIR and the DAS Beamformers

We simulated a 64 element 150 µm pitch 1D linear array operating at 6.5MHz and 75% 

fractional bandwidth in DELFI [30], a custom ultrasound simulation tool that can be downloaded 
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from the Mathworks MATLAB (The Mathworks, Inc., Natick, MA) file exchange website 

(www.mathworks.com/matlabcentral).  All calculations were performed on an IBM Intellistation 

Z Pro (Processor speed 2.80 GHz, 4.00 Gb RAM, IBM Corporation, Armonk, NY).  In general 

an FIR-QCLS apodization profile took less than three minutes of CPU time to calculate with the 

longer filters requiring more computation time. 

Spatial PSFs were calculated in a 2D plane, azimuth and range, at an instant in time 

corresponding to a particular receive focus.  We investigated the ability of our algorithm to 

produce optimal PSFs when using different FIR filter lengths and different receive focal depths.  

We investigated FIR tap lengths ranging from 1-tap to 7-taps and compared these results to PSFs 

produced using the DAS beamformer with conventional apodization functions applied.  In order 

to investigate the FIR beamformer with multiple taps on each channel we had to acquire multiple 

spatial PSFs.  We assumed a receive sampling frequency of 40 MHz for the FIR beamformer and 

a speed of sound of 1545 m/s.  Therefore, the receive focus of every PSF coming into the FIR 

beamformer is separated by 19.3 µm in the axial direction.  We acquired 7 focused, spatial PSFs 

centered around one predetermined focal depth in order to have the spatial PSFs required to 

calculate the unique 1, 3, 5 and 7-tap FIR filters.  For instance to calculate the 3-tap FIR filters 

for the FIR beamformer with a receive focus at 2.0 cm, we used the receive element spatial PSFs 

that had receive foci of 1.99807 cm, 2.00000 cm, and 2.00193 cm.  We then specify a cyst size, 

for instance a 300 µm radius, in order to identify the spatial points that lie outside the cyst and 

inside the cyst to populate the propagation matrices.  With these propagation matrices, the 

weights are calculated according to the QCLS algorithm previously described.

Note that cyst size is an important parameter in the QCLS apodization design method: 

specifying the propagation matrices in equation (8) and implicitly defining mainlobe size in the 

http://www.mathworks.com/matlabcentral
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resulting PSF.  PSFs constructed with QCLS profiles designed for larger cysts will naturally 

have a large mainlobe.  We routinely refer to “design cyst size” to differentiate between QCLS 

profiles.  Every design cyst size will produce a different, optimal QCLS profile, yet experience 

shows that the general shape of the QCLS weights remains similar over a range of cyst sizes.  

Furthermore, we can produce a set of apodization profiles to achieve optimal contrast at every 

cyst size.  When analyzed with the cystic resolution metric, plotting cystic contrast versus cyst 

size, this set of QCLS apodization profiles will generate a lower bound on cystic contrast for the 

FIR and DAS beamformer given the specified system characteristics.  Since scanning through all 

the different apodization profiles would not be realistic in a real-time clinical setting, it is 

interesting to see how an apodization profile designed for a specific cyst size performs over a 

range of cyst sizes.  

To illustrate this important point, figure 2 shows cystic point contrast curves for the 5-tap 

FIR beamformer with a receive focus at 2.0 cm (also the transmit focus).  Cystic contrast is 

computed using equation 7 with the PSF centered in the middle of the cyst and plotted as a 

function of cyst size (from 0.1 mm to 1.0 mm in radius).  The dashed line represents the cystic 

contrast lower bound for this particular beamformer at this receive focal depth.  This lower 

bound is constructed by calculating the cystic contrast for the optimal apodization profile at each 

cyst size.  We also plot the contrast curves for the 5-tap QCLS apodization profiles 

corresponding to a design cyst radius of 100 µm, 500 µm, and 1000 µm.   For each design cyst 

radius the contrast curve touches the lower bound at that cyst size, and contrast performance 

suffers away from the design cyst size.  We have found that the QCLS profile around the “knee” 

of the lower bound curve offers good performance over a large working range of cyst sizes.  For 

example, in figure 2 the 500 µm contrast curve achieves better contrast than the 1000 µm curve 
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for the smaller cyst sizes and also outperforms the 100 µm curve for the larger cyst sizes.  The 

100 µm and 1000 µm curves show that operating at the extremes (really small cysts or really 

large cysts) will produce optimal contrast at the specific design size, but performance is seriously 

degraded at other cyst sizes.  For the remainder of the simulations we use a 400 µm design cyst 

radius for the QCLS profiles unless otherwise noted.

We find that excellent performance with the FIR beamformer can be achieved with a 

modest filter tap length.  In figure 3 we show cystic point contrast curves for the DAS and FIR 

beamformer with a receive focus at 2.0 cm.  The dashed vertical line shows the design cyst 

radius.  It is interesting to note that for this particular system and operating conditions 

conventional receive apodization functions like the Hamming and Nuttall window perform worse 

than using no apodization (rectangular window).  Although the Hamming and Nuttall PSFs have 

lower sidelobes, the cystic resolution metric shows that the lower sidelobes do not outweigh the 

resulting increase in mainlobe width.  The 1-tap QCLS profile on the other hand lowers sidelobe 

levels, maintains a narrow mainlobe, and outperforms all the conventional apodization functions 

for a range of cyst sizes.  More compelling results presented in figure 3 are the dramatic 

increases in cystic resolution when using the multi-tap FIR beamformer.  The 3-tap FIR 

beamformer improves contrast resolution by 10 dB, the 5-tap by 15 dB, and the 7-tap by more 

than 20 dB.  Using longer tap lengths (9, 11, 13, etc.) improved contrast a few more dB over the 

7-tap curve but suggests that there is a limit to the increase in cystic contrast achievable by the 

FIR beamformer.

We investigated the effects of receive focal depth on the FIR beamformer.  In figure 4 we 

show results corresponding to a 64 element receive aperture dynamically focused at 1.0 cm, 2.0 

cm (transmit focus), and 3.0 cm.  The top row of figures plots the integrated lateral beamplots 
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when using different apodization windows.  The beamplots were calculated by integrating the 

energy of the different spatial PSFs in range.  We compare our FIR-QCLS windows against 

conventional windows such as the rectangular, Hamming, and Nuttall windows.  We only show 

results comparing the QCLS windows with the rectangular window since the Hamming and 

Nuttall windows performed worse than the rectangular window at all receive depths.  We 

calculated FIR-QCLS windows using a design cyst radius of 0.4 mm with 1-tap, 3-taps, 5-taps, 

and 7-taps per channel.  Notice the marked reduction of the sidelobe levels for the higher tap 

FIR-QCLS beamplots.  Some lateral beamplots show sidelobe level reduction of 30 dB 

compared to the beamplot for a rectangular window.  The bottom row of plots in figure 4 show 

the cystic point contrast curves.  In general contrast improves when increasing the number of 

taps on each receive channel, however the biggest jump in contrast improvement between tap 

lengths occurs between three taps and one tap.  The FIR-QCLS windows show cystic resolution 

improvements greater than 10 dB for a wide range of cyst sizes.  The FIR-QCLS weights 

computed for the 1.0 cm and 2.0 cm dynamically focused data achieve contrast improvements of 

20 dB over the conventional windows for cysts larger than 0.4 mm.  In general we see similar 

trends at all three dynamic receive focal depths.  The contrast improvement decreases at ranges 

deeper than the transmit focus. 

Figure 5 shows the calculated FIR-QCLS weights for the data dynamically focused at 2.0 

cm.  These weights were computed for a design cyst radius of 0.4 mm.  The 1-tap and 3-tap FIR-

QCLS weights are mostly smooth Gaussian like functions across the aperture, except at the 

endpoints where discontinuities appear.  The 5-tap and 7-tap weights are much more variant and 

discontinuous.  It is interesting to note that the FIR-QCLS weights take on negative values, a 

phenomenon never seen in conventional windows like the Hamming or Nuttall window.  The 
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weights also invert in time on some channels.  Although the weights computed from the FIR-

QCLS algorithm are always real, this inversion in time suggests that a 180o phase shift between 

consecutive time samples reduces sidelobe energy in the PSF.  

B. Robustness of the FIR beamformer in the presence of phase aberration

Receive channel focal delays in the DAS beamformer are calculated assuming a 

propagation speed of sound in tissue.  Conventional systems assume a sound velocity of 1540 

m/s, however actual sound velocities in human tissue vary between human subject and tissue 

type [31].  Differences in the assumed sound speed cause wavefront distortion, amplitude 

variation, and phase variation of the ultrasound beam.  These distortions or phase aberrations 

adversely affect the quality of in vivo images.  Numerous researchers have applied adaptive 

imaging techniques to restore the phase coherence of the receive echoes by compensating for 

these tissue induced aberrations.  Nearly two decades of research has been spent on developing 

algorithms and methods for not only correcting but also estimating aberration in human tissue 

[31]-[37].  

Phase aberration will degrade the DAS beamformer’s PSF, reducing the contrast and 

resolution of the output image.  Therefore, it is important to investigate the affects of phase 

aberration on our proposed FIR beamformer architecture.  Recent literature indicates that phase 

aberrations in the breast can be modeled as a nearfield thin phase screen characterized by a root 

mean square (RMS) amplitude strength of 28 ns and a full-width at half-maximum (FWHM) 

correlation length of 3.6 mm [35], [36].  We performed a series of simulations whereby 

aberrations were used to distort the PSF resulting from the FIR beamformer.  Specifically we 

used data from 100 realizations of a one dimensional 28 ns RMS, 3.6 mm FWHM correlation 
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length aberrator in order to get decent statistics.  Each aberrator distorted the instant in time at 

which each receive channel’s spatial response was calculated.  Note that the same aberration 

would apply to all the spatial PSFs required for the input into the FIR beamformer.

Figure 6 shows how the simulated PSFs for different receive apodization profiles are 

affected by phase aberration.  For each apodization function, the left figure shows the 

unaberrated 2D PSF with a receive focus of 2.0 cm and the right figure shows the same PSF that 

has been aberrated.  The 0.4 mm design cyst radius QCLS apodization profiles were used for all 

FIR beamformer PSFs.  All spatial PSFs are a 6 mm (lateral) by 2 mm (axial) range around the 

focus.  The absolute value of each PSF was calculated and then log compressed to 60 dB for 

visualization.  The aberration profile used for this particular realization is also shown.  It is clear 

that the aberrator raises sidelobe levels and distorts the mainlobe for every PSF.  It is interesting 

that the FIR beamformer PSFs maintain a narrow mainlobe and low sidelobe levels even in the 

presence of aberration.  Furthermore, the sidelobe energy in the aberrated FIR beamformer PSFs 

continually decreases as tap length increases.

Figure 7 summarizes the data from the aberration simulations.  Phase aberration can 

“steer” the ultrasound beam, which can spatially shift the PSF.  In order to be consistent when 

applying the resolution metric, cystic contrast was computed after centering the cyst at the 

maximum of each aberrated PSF.  The plot on the left shows the unaberrated and aberrated cystic 

point contrast curves for the rectangular and 7-tap PSFs.  Also shown is the lower bound (LB) 

contrast curve for the 7-tap FIR beamformer.  The errorbars show +/- 1 standard deviation about 

the mean.  Aberration degrades the cystic point contrast performance for both apodization 

functions: the 7-tap PSF by 7 dB and the rectangular PSF by 2 dB.  However, the 7-tap aberrated 

PSF outperforms the unaberrated rectangular PSF by 10 dB.  The Hamming and Nuttall window 
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performed worse than the rectangular window and are not shown in this plot for clarity.  The plot 

on the right in figure 7 shows the mean cystic contrast for each aberrated PSF relative to the 

rectangular window.  The 0 dB point on the y-axis indicates the aberrated rectangular window’s 

mean cystic contrast for each cyst size.  A more positive dB value indicates better performance 

than the rectangular window, and errorbars are +/- 1 standard deviation.  We only show the

Hamming, Nuttall, 1-tap, and 7-tap plots to reduce clutter in the image.  It is interesting to note 

that the Hamming and Nuttall windows achieve worse cystic point contrast compared to the 

rectangular window over almost the entire range of investigated cyst sizes.  The 1-tap QCLS 

weights in the presence of aberration still improve contrast for the smaller cyst sizes but perform 

worse than the rectangular, Hamming, and Nuttall window for the large diameter cysts.  The 7-

tap QCLS weights maintain 10-15 dB cystic point contrast improvements compared to the 

rectangular window for a large range of cyst sizes.  These results show that the FIR beamformer 

is robust to relatively strong phase aberration errors.  Furthermore even the aberrated FIR 

beamformer outperforms the phase corrected DAS beamformer.  These simulation results 

suggest that the FIR beamformer can dramatically improve the contrast resolution of ultrasound 

images and is robust in the presence of phase aberration. 

EXPERIMENTAL RESULTS

We investigated the ability of our algorithm and novel receive beamformer architecture to 

improve the spatial PSF characteristics of an Ultrasonix Sonix RP ultrasound scanner (Ultrasonix 

Medical Corp., Richmond, BC, Canada).  The Sonix RP system has a software development kit 

(SDK) named TEXO that enables low level scanner control with the ability to acquire single 

channel RF data sampled at 40 MHz with 12 bit precision.  We have also created a Python™ 
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programming language interface to the TEXO SDK that allows us to create customized pulse 

sequences without the need to recompile the system C code.  Utilizing our Python™ interface 

with the TEXO SDK we can acquire a full set of synthetic receive aperture data from a 64 

element transmit aperture and 64 element receive aperture in fractions of a second.  In order to 

measure the 2D PSF required for our algorithm, we imaged a 20 µm steel wire in a tank full of 

deionized water.  We electronically scanned the transmit aperture across the array while 

mechanically moving the array using a 3-axis positioning system (Newport Motion Controller 

MM3000, Newport Co., Irvine, CA) in order to achieve azimuthal spatial sampling of 75 µm and 

axial spatial sampling of 50 µm.  We interpolated the data in MATLAB using cubic splines to 

achieve 25 µm azimuthal sampling and 12.5 µm axial sampling. We acquired a 1.95 cm 

(azimuth) by 0.2 cm (range) by 3000 time sample dataset to characterize the 3D spatio-temporal 

PSF.  The entire experiment required 29 hours to execute, resulting in over 10 Gbytes of raw, 

averaged RF data.  The water temperature remained relatively constant over the course of the 

experiment, ranging between 21.6-22.4 oC.

We used the L14-5 128 element linear probe excited with a 1 cycle 6.67 MHz pulse.  The 

transmit aperture consisted of 64 elements focused at 4.0 cm in range (f/2).  We acquired 64 

receive elements synthetically and averaged each receive signal 100 times to improve electronic 

SNR.  The receive data was digitally bandpass filtered in MATLAB using a 101 order bandpass 

filter with cutoff frequencies at 4 and 8 MHz.  An experimental 2D spatial PSF was formed by 

sampling the interpolated 3D spatio-temporal PSF for each receive element according to a 

dynamic receive profile for a particular receive focus.  

The log compressed, envelope detected experimental 2D PSFs dynamically focused at 2.0 

cm are shown in figure 8. 2D PSFs are shown for conventional apodization functions and 1-tap, 
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3-tap, 5-tap and 7-tap FIR-QCLS windows designed for a cyst radius of 0.35 mm.  The design 

cyst radius is shown for reference. All images are log compressed to 60 dB.  Notice the 

progressive reduction of PSF energy in the sidelobe regions when using the multi-tap FIR-QCLS 

design.  The 7-tap FIR-QCLS PSF has superior axial and lateral resolution compared to the other 

PSFs.  Figure 9 shows the experimental integrated lateral beamplots and contrast curves.  The 

FIR-QCLS weights reduce sidelobe levels, lower the total PSF energy outside the mainlobe, and 

decrease mainlobe width.  For clarity, only the 1-tap and 7-tap QCLS plots are shown.  The 

contrast curves for the rectangular, Hamming, Nuttall, 1-tap QCLS and 7-tap QCLS 

experimental PSFs are shown on the right of figure 9.  The FIR-QCLS PSFs show increases in 

cystic resolution compared to the conventional windows.  Specifically, the 7-tap apodization 

profile improved contrast by 7 dB compared to the Hamming window, by 10 dB compared to the 

rectangular window, and by 12 dB compared to the Nuttall window over a range of cyst sizes.  

Furthermore, the 7-tap curve achieves the best contrast for all cyst sizes investigated.  The QCLS 

weights for the multi-tap FIR filters are shown in figure 10.  They show similar characteristics to 

the weights computed in the simulations including discontinuities at the edges of the aperture as 

well as inversion in time. 

According to the contrast curves for the simulations and experiments, the FIR 

beamformer improves cystic contrast.  However, results from the cystic resolution metric will 

not necessarily translate to improved lesion detectability in B-mode images, since the metric only 

specifies the point contrast at the center of the cyst.  Therefore it is desirable to analyze 

detectability in B-mode images.  We simulate B-mode ultrasound images and calculate a contrast 

to noise ratio (CNR) defined as:
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CNR =10log10

Icyst

Ispeck









 , (10)

where Icyst  and Ispeck are the mean signal intensity values for image regions inside the cyst and 

outside the cyst, respectively.  A similar equation was proposed in [38] for lesion detectability 

for log compressed B-mode images.  We simulated B-mode images of cysts embedded in a 

speckle generating background by performing a 2-dimensional convolution of a target function 

and an experimental PSF.  Note that this assumes shift invariance of the PSF over the image 

region, which is a reasonable assumption over the small, simulated axial and lateral ranges.  We 

simulate 1000 different speckle generating backgrounds to get good statistics on lesion contrast 

as computed by equation 10.  We formed B-mode images of cyst sizes ranging from 0.1 mm to 

1.75 mm in radius using the rectangular, Hamming, Nuttall, 1-tap QCLS, and 7-tap QCLS 

experimental PSFs.  A representative realization of the simulated B-mode images for all the 

different PSFs is shown in figure 11.  All images are enveloped detected and log compressed to 

30 dB.  These images show a 5 mm by 5 mm region surrounding a 0.5 mm radius cyst.  The 

QCLS weights were designed for a 0.35 mm radius.  The cyst in the image made using the 

rectangular apodized PSF is corrupted with clutter from the PSF’s high sidelobes.  The speckle 

size is finer than the other images due to the PSF’s narrow mainlobe.  The Nuttall PSF image has 

much larger speckle size due to the large mainlobe width, which severely blurs the cyst.  The 

Hamming and the 1-tap QCLS PSFs produce similar images, with the 1-tap PSF arguably 

reducing the clutter inside the cyst to a greater degree.  The 7-tap PSF clearly outperforms all the 

conventional windows, reducing clutter inside the cyst and sharpening the cyst boundary.  We 

show the actual cyst size for comparison.  

In figure 12 we plot cyst CNR computed from (10) as a function of cyst radius.  We plot 
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the mean values computed over the 1000 trials.  A more negative contrast value indicates better 

performance.  We show two plots, one corresponding to a computed contrast at a cyst size that is 

the same size as the imaged cyst (100% plot on the left) and the other computed assuming a 

smaller cyst (70% plot on the right).  We use a smaller cyst in order to reduce edge effect 

corruption in the CNR calculations.  Contrast improves with increasing cyst radius for all 

windows.  Computing contrast with the true cyst size results in a 2 dB improvement in B-mode 

CNR for the 7-tap PSF.  Computing contrast with 70% of the true cyst size results in a 4-10 dB 

CNR improvement over the conventional windows.  These results reinforce the qualitative 

improvements seen in the B-mode images of figure 11.  

DISCUSSION

We have presented a novel receive beamformer architecture where conventional 

apodization is replaced with FIR filters on each channel; a system architecture prevalent in the 

RADAR literature but not currently employed in medical ultrasound.  Schwann et al. suggested a 

similar type of architecture for ultrasound using linear phase FIR filters and also discussed the 

calculation of frequency dependent optimal receive apodization profiles [10].  Their simulation 

results showed contrast improvements, however, their multiple objective formulation required 

iterative procedures and made it difficult to determine an “optimal” apodization profile.  Our 

formulation on the other hand requires no iteration and produces an optimal apodization profile 

(in a least squares sense) that maximizes cystic resolution.  Furthermore, the improvements in 

system performance using the FIR-QCLS windows are easily quantified using the contrast 

resolution metric.  Our beamformer’s mathematical formulation is similar to the broadband 

maximum energy array described by Korompis et al. which maximizes a generalized Rayleigh 
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ratio of beampattern energies.  Their algorithm uses a frequency domain far-field analysis and 

allows for user defined spatial and frequency constraints of the beam pattern [9].  Our QCLS 

algorithm is similar since it minimizes a ratio of energies, but is different in its formulation for 

time domain, nearfield, broadband beamforming.

The FIR filters computed from the QCLS algorithm are not linear phase but are 

frequency dependent given the a priori system operating conditions.  Constraining them to be 

linear phase is straightforward using our formulation, however contrast improvements would 

decrease compared to a nonlinear phase FIR filter of the same order.  The frequency response of 

the FIR-QCLS filters is a concern because it could reduce SNR, negating the improvements in 

contrast resolution.  However, the initial results from the simulations and experiments do not 

indicate that the FIR-QCLS filters drastically change the spectra of the received data.  If future 

results show that SNR is severely decreased, it may be possible to constrain SNR in our QCLS 

formulation by using techniques similar to those presented in [9] concerning the constrained 

maximum energy array.  

Our experimental and simulation results show that we can achieve large gains in cystic 

contrast with a modest length FIR filter (3-7 taps).  The contrast curves also indicate that the 

gains in contrast decrease with increasing tap length.  It is natural to wonder if limits exist on the 

length of the FIR filters or if there exists a lower bound on contrast.  Filter tap length is limited 

by the sampling of the A/D in the receive beamformer.  As tap length increases the resulting FIR 

beamformer PSF incorporates PSFs that are displaced more and more axially around the

particular focus.  Eventually the QCLS algorithm will incorporate a PSF where most of the 

PSF’s energy lies outside the design cyst boundary.  This will tend to make the filter tap weights 

associated with that PSF close to 0.  This effect can be seen in the 7-tap weight images of figures 
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5 and 10, where the first and last taps for every receive channel are smaller in magnitude than the 

weights for the middle taps on each channel.  One could naturally increase the number of 

possible taps by increasing the sampling frequency of the receive A/D’s.  This may further 

enhance the contrast improvements however higher sampling frequencies will require significant 

changes to the receive beamformer hardware as well as increase system complexity.  For this 

paper we assumed a sampling frequency of 40 MHz, typical for conventional systems, and will 

investigate higher sampling frequencies in future research.

Our experimental results do not show the same large gains in contrast (15-20 dB) and 

point resolution observed in the simulations.  Possible causes for this disparity include: a limited 

element angular response on the array, poor single channel SNR, element nonuniformity across 

the array, and hysteresis in the motors of the 3D motion stage.  All of these effects are 

detrimental to the FIR-QCLS algorithm.  While compiling a full set of dynamic receive FIR-

QCLS filters for every output image pixel is possible given the full spatio-temporal PSF dataset, 

to acquire such a dataset is infeasible with our current experimental setup.  We are currently 

researching methods to improve our characterization of the system without the need to physically 

acquire the full 4D spatio-temporal PSF.  If these solutions prove successful, we will be able to 

calculate the full set of receive filters and further assess the performance of our algorithm to 

produce optimal contrast.  

Further investigation is required to examine the effects of phase aberration on the FIR 

beamformer, although the simulation results presented in this paper suggest that the FIR 

beamformer is robust to such distortion.  We must investigate different system conditions and 

acquire in vivo data in order to fully appreciate the extent to which phase aberration corrupts the 

FIR beamformer.  We point out that our PSF formulation is readily adaptable to model harmonic 
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imaging which has been shown to reduce the detrimental effects of phase aberration  [39].

Ranganathan’s [26] cystic resolution metric quantifies the contrast at a single point in 

space at an instant in time.  In this paper we use it to measure the contrast of the center of a cyst 

in a speckle background.  The cystic resolution metric is useful for guiding system design 

because system parameters can be optimized in a straightforward, rigorous manner.  However, 

the relationship between cystic resolution and lesion detectability in B-mode images remains 

unclear.  The B-mode CNR plots in figure 12 show improvements in contrast using the 7-tap 

PSF as compared to the conventional windows.  The 2-2.5 dB estimated for the true cyst size 

does not seem indicative of the qualitative improvement in detectability seen in figure 11.  The 

4-10 dB improvements observed when using 70% of the true cyst size indicate that edge effects 

were corrupting the 100% radius CNR calculations.  These results suggest that even a small 

change in B-mode contrast can greatly improve lesion detectability for small cysts.  The authors 

point out that more rigorous contrast-detail metrics, such as those presented in [27] and [38], 

were not used because these previous metrics rely upon the assumption that the cyst 

encompasses many resolution cells (> 20).  The cysts investigated in our B-mode analysis are 

much smaller and do not satisfy these resolution cell requirements.  We did not investigate large 

cyst sizes (0.5 cm – 2 cm in diameter) because the experimental contrast curves in figure 9 show 

that for cysts greater than 2 mm in diameter cystic contrast levels off for all the different PSFs.  

Furthermore, the acquired experimental PSFs are limited in range and our shift invariance 

assumption of the PSF becomes less valid for larger ranges.  Nonetheless, figures 11 and 12 

show qualitative and quantitative improvements in contrast using the FIR beamformer.  We plan 

to perform a human observer study in order to further assess the contrast enhancements of our 

novel receive beamformer architecture.  
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The FIR beamformer presented in this paper offers large contrast improvements for a 

minimal increase in system complexity.  Once the system response has been adequately 

characterized, computation of the FIR filters is straightforward and requires no iteration. Results 

suggest that the FIR beamformer has the potential to significantly improve contrast of anechoic 

lesions and improve beamforming in general with the synthesis of PSFs that have narrow 

mainlobes and low sidelobes.  The FIR beamformer should increase contrast and resolution as 

well as extend the depth of field in conventional B-mode imaging.  In one-way beamforming 

systems and other novel beamforming techniques, the FIR beamformer could increase point 

resolution and contrast by improving the overall system PSF.   

CONCLUSION

The results presented here show that under the analyzed conditions, the FIR beamformer 

enhances the contrast resolution of ultrasound images.  The 2D spatial PSFs produced in 

simulations and experiments show lower sidelobe levels and narrower mainlobes than PSFs 

produced with the DAS beamformer and conventional apodization windows.  The FIR-QCLS 

algorithm appears stable across dynamic receive focal ranges and performs better in the presence 

of phase aberration than a phase corrected DAS beamformer.  Further investigation is required to 

examine the effects of shift variance of the system response, varying frequency response of the 

channel filters, and the costs of implementation in a real system.  Results suggest that filters with 

as few as 7 taps can offer large contrast improvements.  Furthermore, FIR-QCLS apodization 

profiles consistently outperform conventional apodization profiles and offer significant gains in 

image quality with a modest increase in system complexity.
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Fig. 1.  Receive beamformer architectures: (top) Conventional delay-and-sum beamformer (bottom) proposed FIR 
beamformer.  The architecture depicted on the bottom shows the proposed beamformer with 3-tap FIR filters.  Note 
that apodization is applied after dynamic receive focusing in both architectures.  



Manuscript submitted for publication in IEEE Transactions UFFC May 29th, 2007

28

Fig. 2.  Cystic contrast curves for the 5-tap FIR beamformer investigating different design cyst radii.  The lower 
bound curve (--) is generated by computing the cystic contrast for the optimal QCLS 5-tap filter at each design cyst 
radius.  The 100 µm design radius curve (solid line) achieves the best contrast for cysts smaller than 250µm but 
suffers at larger cyst sizes.  The 1000 µm design radius curve (-•-) performs well over a larger range than the 100 
µm curve, but has the worst contrast at cysts smaller than 300 µm.  The 500 µm design radius curve offers a good 
tradeoff between these two operating extremes.  For the most part, these trends are similar for FIR filter tap length.
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Fig. 3.  Cystic contrast curves for the DAS beamformer with different conventional apodization functions and the 1-
tap, 3-tap, 5-tap, and 7-tap FIR beamformer with 400 µm design cyst (dashed vertical line) apodization profiles.  
Data is calculated from the PSFs focused at 2.0 cm on transmit (f/2) and 2.0 cm on receive (f/2).  It is interesting to 
note that for this particular system configuration both the Hamming and Nuttall windows degrade cystic contrast 
compared to the rectangular window.  The reduction in sidelobe energy achieved through apodization does not 
outweigh the increase in mainlobe size.  The 7-tap FIR beamformer improves cystic contrast by almost 20 dB.   
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Fig. 4. Integrated lateral beamplots and cystic contrast curves comparing different apodization functions at different 
dynamic receive focal depths (Tx focus at 2.0 cm).  FIR-QCLS weights were calculated for 1-tap, 3-tap, 5-tap, and 
7-tap FIR filters with a design cyst radius of 0.4 mm (indicated as a dashed line in all plots).  Notice the large 
reduction in sidelobe and grating lobe levels for the higher tap filters.  The bottom row shows cystic contrast curves 
as a function of cyst radius for the simulated 2D PSFs.  Cystic contrast is improved by more than 20 dB for the 
higher tap FIR filters at dynamic receive focal depths of 1.0 and 2.0 cm.  In general longer tap filters increasingly 
improve contrast resolution, but the gain in contrast between two subsequent tap lengths (i.e. 1 vs. 3-taps and 3 vs. 
5-taps) continually decreases.
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Fig. 5.  FIR-QCLS weights for the multi-tap FIR filters.  These weights correspond to the PSF dynamically focused 
at 2.0 cm in figure 4.  The 1-tap and 3-tap weights are smooth curves across the receive aperture with some 
discontinuities at the edges.  The 5-tap and 7-tap filters are more variant and discontinuous across the aperture.  
Notice that some weights take on negative amplitudes and the filters are not linear phase.
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Fig. 6.  Unaberrated (left) and aberrated (right) simulation PSFs for different apodization functions.  All images are a 
6 mm (lateral) by 2 mm (axial) area of the PSF.  The absolute value of each PSF was calculated and then log 
compressed to 60 dB for visualization.  The aberration profile (3.6 mm FWHM, 28.8 ns RMS) associated with this 
particular realization is also shown.  The aberration distorts the mainlobe and raises sidelobe levels in all PSFs.  
Note that the FIR beamformer PSFs maintain relatively narrow mainlobes.  The sidelobe energy in the aberrated FIR 
beamformer PSFs continually decreases as tap length increases.
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Fig. 7.  Cystic contrast plots calculated using 100 realizations of a 28 ns RMS, 3.6 mm FWHM one dimensional 
aberrator.  The plot on the left shows the contrast plots for the unaberrated and aberrated rectangular and 7-tap PSFs 
with a receive focus at 2.0 cm.  The errorbars are +/- 1 standard deviation for the aberrated contrast plots.  Also 
shown is the lower bound on cystic contrast for the 7-tap PSF.  Note that aberration degrades the contrast 
performance for both the rectangular and 7-tap PSF as expected.  However, even the aberrated 7-tap PSF
outperforms the unaberrated rectangular PSF by almost 10 dB.  The Hamming and the Nuttall windows performed 
worse than the rectangular window for this particular system configuration.  The plot on the right shows the contrast 
performance for the Hamming, Nuttall, 1-tap, and 7-tap PSFs in the presence of aberration normalized to the 
rectangular window’s contrast (0 dB for all cyst radii).  A more positive contrast value indicates better cystic 
contrast than the rectangular window, and errorbars are +/- 1 standard deviation.  Note that the Nuttall window never 
performs better than the rectangular window, and the Hamming window only performs better for cysts larger than 
0.9 mm in radius.  The 1-tap PSF outperforms the rectangular window for smaller cyst sizes.  The 7-tap PSF 
improves cystic contrast by more than 10 dB over a range of cyst sizes.  The dashed vertical lines in both plots 
indicate the design cyst radius.  
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Fig. 8.  Experimental 2D PSFs with different receive apodization functions applied.  Each image is 0.2 cm axially by 
1.95 cm laterally.  All images were envelope detected and log compressed to 70 dB.  The conventional windows’ 
PSFs suffer from large sidelobes and wide mainlobes.  The multi-tap FIR-QCLS apodization functions progressively 
reduce the total sidelobe energy while maintaining a tight mainlobe in the spatial PSFs.  The design cyst is shown 
for reference.
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Fig. 9.  Experimental integrated lateral beamplots (left) and contrast curves (right) with different receive apodization 
functions applied.  The vertical dashed lines indicate the design cyst radius for the FIR-QCLS filters of 0.35 mm.  
The Hamming and Nuttall window achieve lower sidelobe levels than the rectangular apodization function but have 
a larger mainlobe.  The 1-tap QCLS apodization function achieves a tight mainlobe, but has significant energy in the 
sidelobe region.  The 7-tap QCLS apodization function achieves a tight mainlobe and dramatically reduces the 
amount of energy in the sidelobes.  The Hamming, Nuttall and 1-tap QCLS functions achieve worse contrast than 
the rectangular function for small cyst sizes due to their mainlobe widths.  The 1-tap QCLS apodization function is 
outperformed by the Hamming and Nuttall windows at cyst sizes greater than 0.4 mm.  The 7-tap FIR-QCLS 
apodization function improves cystic resolution by more than 7 dB for a range of cyst sizes and achieves the best 
contrast at every cyst size investigated.
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Fig. 10.  Experimental FIR-QCLS weights.  These weights correspond to the PSFs dynamically focused at 2.0 cm in 
figure 8.  The weights show similar characteristics to the simulations: smooth curves across the aperture, 
discontinuities at the edges of the aperture, and inversion in time.
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Fig. 11.  Simulated B-mode images of a 1.0 mm diameter cyst embedded in speckle using the experimental PSFs.  
All images are log compressed to 30 dB and show a 5 mm by 5 mm area surrounding the anechoic cyst.  The cyst 
made using the rectangular window is corrupted by clutter from the large sidelobes and the cyst made using the 
Nuttall window is blurred from the large mainlobe.  The 1-tap and Hamming windows produce similar images with 
the 1-tap PSF reducing clutter inside the cyst.  The 7-tap PSF image clearly outperforms the conventional windows: 
reducing clutter, sharpening the cyst boundary, and improving detectability.  The 1.0 mm diameter cyst is shown for 
reference.
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Fig. 12.  Cystic CNR computed from the 1000 simulated B-mode images.  CNR is computed using equation (10), 
and a more negative value indicates better performance.  Contrast was computed using 100% (left) of the true cyst 
size and 70% (right) of the true cyst size.  A smaller cyst size was used in order to reduce edge effects.  CNR
increases for increasing cyst radius from 0.1 mm to 1.75 mm.  The 7-tap QCLS window achieves 2-2.5 dB contrast 
improvement according to the 100% plot and 4-10 dB improvement according to the 70% plot.  These results 
reinforce the increased cyst detectability of the B-mode images in figure 7.  It is interesting to note that rectangular 
PSF resulted in better detectability than the Hamming PSF for the smaller cyst sizes even though the B-mode images 
in figure 11 would suggest otherwise.
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Abstract— For nearly four decades, adaptive beamforming 

(ABF) algorithms have been applied in RADAR and SONAR 
signal processing. These algorithms reduce the contribution of 
undesired off-axis signals while maintaining a desired response 
along a specific look direction. Typically, higher resolution and 
contrast is attainable using adaptive beamforming at the price of 
an increased computational load. In this paper we describe a 
novel ABF designed for medical ultrasound, named the Time-
domain Optimized Near-field Estimator, or TONE. We 
performed a series of simulations using synthetic ultrasound data 
to test the performance of this algorithm and compared it to 
conventional, data independent, delay and sum beamforming 
(CBF) method. We also performed experiments using a Philips 
SONOS 5500 phased array imaging system. CBF was applied 
using the default parameters of the Philips scanner, whereas 
TONE was applied on per channel, unfocused data using an 
unfocused transmit beam. TONE images were reconstructed at a 
sampling of 67µm laterally and 19µm axially. The results 
obtained for a series of five 20µm wires in a water tank show a 
significant improvement in spatial resolution when compared to 
CBF. We also analyzed the performance of TONE as a function 
of speed of sound errors and array sparsity, finding it robust to 
both. 

Index Terms—Ultrasound Imaging, Beamforming, Image 
Reconstruction. 
 

I. INTRODUCTION 

S ENSOR arrays are used in many application fields including 
RADAR, SONAR, geophysics, and medical imaging. For 

these applications, the received data is often processed using 
conventional “delay-and-sum” beamforming. In this method, 
the output is formed by summing weighted and delayed 
versions of the received signals. The delays used for each 
sensor element are determined by the array geometry and the 
desired look direction. While this approach is straightforward 
and easy to implement, off-axis scatterers can introduce 
clutter, reducing the overall quality of the beamformer output. 
This is shown schematically and experimentally in figure 1. In 
panel A, an array of sensors is focused along the dotted line 

and a single point target is placed in the look direction, or on-
axis, at a fixed distance from the array. The target reflects 
energy toward the array, generating a signal on each of the 
individual sensors. Focal delays are applied to each signal to 
generate the sensor/range data set shown in the right of the 
figure. Summation across sensors to form an image line will 
amplify the signal coming from the look direction. However, 
when a secondary target is placed off-axis, as shown in panel 
B, it may lie within the array’s transmit beam and therefore 
contribute to the received echo. This is apparent in the tilted 
waveforms visible in the sensor/range data set. Although 
summation across sensors amplifies the signal coming from 
directly in front of the array, it does not entirely eliminate the 
contribution of the off-axis target. Finally, panel C of figure 1 
depicts medical ultrasound data obtained from the thyroid of a 
human subject (data courtesy of Gregg E. Trahey, Duke 
University). At least three clear waveforms (possibly due to 
micro-calcifications in the thyroid) are visible in this 
sensors/range data set. These non-focal targets would appear 
in this image line as clutter, ultimately reducing image 
contrast and resolution. 

The problem of nulling the contribution of off-axis 
scatterers was first investigated for RADAR and SONAR 
systems by extending the pioneering work of Norbert Wiener. 
The application of Wiener filter theory to array signal 
processing led to the initial development of adaptive 
beamforming [1-3]. In ABF, the information encapsulated in 
the data received by an array of sensors is used to determine a 
set of weights that optimize the beamformer output. 

For nearly four decades, a variety of adaptive beamforming 
algorithms have been developed, each exploiting specific 
properties of the received data. These algorithms are able to 
achieve resolution far superior to that predicted by diffraction 
theory, while simultaneously attaining excellent side lobe 
reduction. The most common approaches calculate a series of 
weights by minimizing the energy in the beamsum signal, 
subject to the constraint that the beamformer must exhibit a 
given response in the look-direction [4, 5]. Attenuation of off-
axis targets is obtained by applying those weights to the 
received data. Typically, the second order statistics (i.e., the 
covariance matrix) of the data are used to determine the 
weights. These algorithms were initially applied in passive 
SONAR, where the use of receive only systems allowed 

 
Manuscript received January 11, 2007. This work was supported in part by 

the US Army Congressionally Directed Medical Research Program in Breast 
Cancer grant No.W81XWH-04-1-0590. 

F. Viola, M. A. Ellis, and W. F. Walker are with the Department of 
Biomedical Engineering, University of Virginia, Charlottesville, VA 22908 
USA (Corresponding author e-mail: fv7d@ Virginia.edu).  



TMI-2007-0317.R1 
 

2

acquisition of numerous unique statistical looks at the 
environment. This is not generally the case for a 
transmit/receive system, such as medical ultrasound. 

 

 
Fig. 1. Panel A: an array of sensors is focused along the look direction (dotted 
line) where a single point target is placed at a fixed distance from the array. 
The received data after focusing is depicted on the right side. Panel B: when a 
secondary target is placed off-axis it will corrupt the received data by 
introducing the tilted waveforms observed on the right hand side of this 
figure. Panel C: in vivo single channel thyroid data. The data sets clearly show 
the presence of bright off-axis scatterers, as evidenced by the tilted wave 
fronts. Data in Panel C courtesy of Gregg E. Trahey, Duke University. 
 

Alternative ABF algorithms were simultaneously developed 
to utilize different properties of the received signals. Common 
approaches include the reduced rank beamformers [6-8]. The 
basic concept underlying these methods is to save 
computation time by calculating a reduced rank covariance 
matrix that only includes the strongest scatterers. Oblique 
projections have also been proposed to beamform the data in a 
subspace which is orthogonal to the space spanned by the 
scatterers [9, 11]. 

It is often the case that limited data are available, making 
computation of a reliable covariance matrix difficult. This 
could be due, for example, to non-stationary environments, 
fast moving targets, or transmit/receive operation. In these 
cases, several groups have proposed the use of a diagonal 
loading term to obtain a stable covariance matrix which allows 
solution for the optimal weights [12-15]. Diagonal loading is a 
common technique in array signal processing to stabilize a 
matrix which is ill-conditioned for inversion. Another series 
of adaptive algorithms has been developed which does not 
rely on statistical properties of the data and thus can be used 

on a single realization (or snapshot). These approaches are 
particularly well suited to pulse-echo imaging. These 
algorithms include techniques based on generalized 
eigenvalue problems [16, 17], Bayesian approaches [18-20], 
maximum likelihood estimators [21, 22], data-adaptive 
regularization [23], and minimum worst-case gain methods 
[24]. 

In medical ultrasound, bright off-axis targets can seriously 
degrade image quality by introducing broad image clutter, 
which reduces image contrast and resolution. This is 
confirmed in the thyroid data of figure 1C. Further, it is well 
known that the acoustic reflectivity of targets within the body 
covers many orders of magnitude [25]. The successful 
application of adaptive beamforming to medical ultrasound 
would reduce the effects of bright off-axis targets, thus 
improving the overall image quality. However, the unique 
characteristics of ultrasound data make blind application of 
existing adaptive beamforming algorithms unlikely to be 
successful. Unlike passive SONAR, for example, limited 
statistics are available in medical ultrasound to form a robust 
covariance matrix. Furthermore, on-axis and off-axis signals 
are strongly correlated, requiring the use of special algorithms 
such as the Duvall beamformer [26] or pre-processing 
techniques such as spatial smoothing to decorrelate signals 
before filtering is applied [27-31]. Lastly, ultrasound imaging 
is generally performed using broad-band signals in the near-
field, while many adaptive beamforming techniques are 
specifically designed for narrow-band signals in the far-field. 

In the past, several groups have applied adaptive algorithms 
to medical ultrasound beamforming. Mann and Walker [32, 
33] showed increased resolution and contrast using a modified 
version of the Frost beamformer [5]. Other groups [35, 40] 
have applied the Capon beamformer [4] coupled with spatial 
smoothing to decorrelate on-axis and off-axis signals. Wang et 
al. [34] used synthetic transmit focusing to generate a robust 
covariance matrix. Although Wang’s initial results are 
positive, the use of synthetic transmit significantly limits the 
application of these algorithms in real clinical environments 
because of potential motion artifacts and limitations of 
existing hardware. 

In this paper we present an algorithm that is well suited for 
beamforming in medical ultrasound imaging. We briefly 
describe the algorithm, present initial results from simulations 
and experiments, and offer discussion and conclusions. 

Note for the reader: matrices are represented using 
underlined upper-case italic characters such as X , while 
vectors are represented using underlined lower-case italics 
such as x . Superscripts H and T represent conjugate 
transpose and regular transpose operations, respectively. 

 

II. TIME-DOMAIN OPTIMIZED NEAR-FIELD ESTIMATOR 
(TONE) 

The algorithm presented here is developed from the Spatial 
Processing: Optimized and Constrained (SPOC) technique 
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originally developed by Van Trees et al. for applications in 
passive SONAR [18]. We term it Time-domain, Optimized, 
Near-field Estimator, or TONE. TONE is particularly useful 
since it does not require knowledge of second order statistics 
and is therefore applicable with only a single realization of 

data. Furthermore, it does not require any pre-processing 
technique to be applied. This algorithm is briefly described as 
follows. 
 

 
Fig. 2. Schematic representation of TONE beamforming. A signal model is first generated of the field produced by a series of hypothetical targets. The sensors’ 
output is matched to the signal model to solve for the position and intensity of the real targets. Statistics are not required and both near-field/far-field and 
broad/narrow band cases can be considered. 

 
The TONE algorithm is built upon the following linear 

model of image formation. Similar linear model formulations 
have been used in medical ultrasound [41-43]. The imaging 
region, referred to as the region of interest (ROI), is first 
subdivided into a collection of hypothetical targets at arbitrary 
positions, as shown schematically in figure 2. Finer grid 
sampling yields finer final image resolution but entails higher 
computational costs. For each hypothetical targets in the ROI, 
we determine (through experiment, simulations, or theory) the 
signal received by the array from a target at that specific point. 
We refer to this two-way response as the spatial response for a 
particular target. For every hypothetical target, the spatial 

response is a matrix of dimensions TxN, where T is the 
number of samples in the axial, or temporal, dimension and N 
is the number of sensor elements in the array. Note that this 
formulation accommodates any array geometry. After the 
spatial responses for all the hypothetical targets have been 
determined, these responses are reshaped to form an array 
manifold matrix V  of dimensions NTxLP, where L and P are 
the numbers of hypothetical targets in the range and lateral 
dimensions, respectively. The observation model becomes: 

 
fVx =         (1) 

 



TMI-2007-0317.R1 
 

4

where T
Nxxxx ][ 21 LL=  is the data received by the 

N-element array and f  is the LPx1 target vector, whose 

elements are the amplitudes of the hypothetical target located 
in the ROI. x is an NTx1 vector that is obtained by 

concatenating the Tx1 channel data ix . Given x  and V , 

TONE operates on the received data x  and the array manifold 

matrix V  to solve for the position and intensity of the real 

targets (i.e., the f  vector). In this paper we solve this under 

determined problem using a maximum a posteriori estimate of 
the target vector, as explained below. We initially consider the 
joint probability density function (PDF) p(x, f ). The 

maximum likelihood estimate of f  is given by [39]: 

fVxtosubject

ffunctionCost
LP

l
lf

=

∑
=

:

lnmin:
1

2

     (5) 

 
where fl are elements of f . A solution for the MAP 

optimization problem is found using the following iterative 
procedure [18, 36]: 

1. Perform an eigen-decomposition of the matrix 
HH PPVV Λ= , where P  contains the 

eigenvectors and ),,,( 21 LPdiag λλλ L=Λ  

contains the eigenvalues in descending order. Note 

that the maximum rank of VHV  is NT, therefore 
there will be at least LP-NT zero eigenvalues. 

 2. Divide the eigenvalues into two groups: non zero 
),,,( 21 fixλλλ L

,,,( 21 fixfix

, and zero 

)LPλλλ L++ . 

),(maxˆ fxpf f=        (2) 

 
Note that the estimate of f  is obtained by constraining the 

problem such that the observation model in equation (1) is 

satisfied. That is to say, fVx ˆ= . The joint PDF in (2) can be 

rewritten using the conditional PDF )/( fxp  and the 

marginal density p( f ) as follows: 

3. Decompose the eigenvector matrix P  into freeP  

and fixP , corresponding to the non zero and zero 

eigenvalues, respectively. 
4. Compute xPVx H

fixfix )(=′ . 

5. Compute fixfixfix
xf ′Λ=′ −1 , where 

),,,( 11
2

1
1

1 −−−− =Λ fixfix diag λλλ L . 

 

)()/(max),(maxˆ fpfxpfxpf ff ==     (3) 

 6. Initialize 
free

f ′  to zero. 
which is referred to as the maximum a posteriori (MAP) 

estimate of f . Note that the conditional PDF )/( fxp  is 

equally likely for every f  that satisfies the observation 

model described in equation (1). Thus equation (3) reduces to 
the following: 

7. Compute 
freefreefixfix fPfPf ′+′= . 

8. Compute the diagonal matrix 

),,,( 22
2

2
1 LPfffdiagT L= . 

9. Compute 

fixfix
H
fixfix

H
freefree

fPTPPTPf ′=′ −1))(( . 
 

)(maxˆ fpf f=        (4) 
10. Repeat steps 7-9 until 

free
f ′  has converged.  

Furthermore, we assume that the marginal PDF p( f ) is 
known a priori and mathematically expressed as a zero-mean 
Gaussian distribution. That is to say that the targets follow a 
Guassian amplitude distribution. The constraint imposed by 
the observation model (1) on equation (4) assures that the 

trivial solution 0ˆ =f  (which is the maximum likelihood 

solution for a zero-mean Gaussian pdf) is not obtained for non 
zero target distribution. Thus, the MAP problem becomes: 

11. The target amplitudes are given by step 7. 
 

The original SPOC algorithm of Van Trees was developed 
for applications in passive SONAR, assuming narrow-band 
signals received from the far-field. In this application, the 
received data x  is simply an N element vector of the complex 
demodulated signals received on each channel. Since passive 
SONAR assumes narrow-band signals, this received data 
consists of only a single complex sample on each channel. The 
signal from a single far-field target received by a uniformly 
spaced linear array takes on the form of a discretely sampled 
complex exponential. The array manifold matrix for this 
application thus consists of a set of Q columns, each of which 
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is an N sample complex exponential of a different frequency 
(Q is the number of hypothetical targets placed in the far-
field). In medical ultrasound, the received signals are near-
field and broad-band, and this requires a significantly different 
signal model. Hypothetical targets are now distributed over 
the range (P) and lateral (L) dimensions of the ROI. 
Furthermore, time records of length T are necessary to fully 
capture the broad-band nature of the signals. Given an N 
element linear array, the array manifold matrix is thus of 
dimensions NTxLP, as described above.  

It is also possible to formulate a signal model in the 
frequency domain. In this case, the algorithm is applied to 
every frequency bin and the array manifold matrix is 
constructed using complex exponential signals with different 
phases. Although both the frequency and time domain 
approaches are possible, in this paper we use the time domain 
approach because it more fully captures the intrinsic 
complexity of the data. 

Extension to 3D data sets simply requires distribution of 
hypothetical targets over a volume and three dimensional 
spatial responses to form the array manifold matrix. The 
mathematical formulation is the same of that used in equation 
(1) except that the dimensions of V  are now NTZ by LPQ, 
where Z and Q are the number of samples and the number of 
hypothetical targets in the third dimension, respectively (the 
dimensions of f  and  x  also change accordingly). 

 

I. SIMULATION METHODS 
Computer simulations were performed to compare the 

performance of TONE to conventional delay-and-sum 
beamforming. All calculations were performed in MATLAB 
(MathWorks Inc., Natick, MA), and utilized synthetic 
ultrasound signals. 

A. Resolution 
For this set of simulations, we modeled a 32 element linear 

array operating at 5 MHz with roughly 70% fractional 
bandwidth (BW) and 150µm element pitch. The array 
response was modeled using DELFI, an ultrasound system 
simulation tool recently developed in our lab [44].  The radio 
frequency (RF) data were sampled temporally at 40MHz.  We 
simulated two ideal point targets in front of the array at a 
depth of 20mm and reconstructed the image in a region 1mm 
axially by 2mm laterally. The points were separated by a 
distance of 50µm, 60µm, 90µm, 150µm, 300µm, and 1500µm 
to demonstrate the lateral resolution limits of TONE. 
Hypothetical targets were placed axially every 20µm and 
laterally every 40µm. Transmission was simulated by firing on 
all 32 elements simultaneously. This simulates a plane wave 
transmit and allows for a more computationally efficient and 
compact description of the ROI. For, all the simulations 

presented in this paper, the array manifold matrix V  was 
obtained by simulating with DELFI the responses at the 

locations of each hypothetical target. Doing so allowed for the 
consideration of both angular sensitivity and attenuation. The 
same target distributions were also processed using the 
conventional delay and sum beamforming; in this case we 
used a fixed focused transmit and dynamic focusing on 
receive. 

B.  Point Targets 
A series of point targets were distributed within a 4x5mm 

region in range and azimuth, respectively. Elevation slice 
thickness was not considered in this set of simulations. In this 
case, we simulated a 32 element linear array operating at 
5MHz with 150µm element pitch. Also in this case, the 
sampling frequency was set at 40MHz. In the case of TONE, a 
plane wave was simulated by transmitting on all 32 elements. 
Conventional beamforming was applied using fixed focus 
transmit and dynamic receive focusing. For TONE, we 
discretized the image region into a series of hypothetical 
targets separated 20µm in range and 120µm in azimuth. The 
positions of the points were chosen so that none coincided 
with the positions of the hypothetical targets. 

C. Anechoic Cyst 
A 1mm radius anechoic cyst was simulated in front of the 

array and surrounded by ultrasonic scatterers randomly 
distributed within the image region. Roughly 4,000 scatterers 
were placed within the ROI, providing more than the typical 
15 scatterers per resolution cell needed to generate fully 
developed speckle [38]. Scatterers’ amplitudes followed a 
Gaussian distribution with zero mean and standard deviation 
of one. Simulation methods are the same as those described in 
the previous section, except that the hypothetical target 
sampling was reduced to 100µm in azimuth. The positions of 
the scatterers do not necessarily coincide with the position of 
the hypothetical targets. Furthermore, as for the simulated 
wires, elevation effects were not considered. 

D. Algorithm Robustness 
 The simulations previously described were performed 

under ideal, noiseless conditions. Additional simulations were 
performed to test the robustness of TONE to various level of 
noise. We used the same simulation parameters as for the 
resolutioF simulation with 90µm separation, except that 
Gaussian noise was added to each receive channel. In order to 
mimic RF data after the bandpass filtering step, the noise was 
bandpass filtered using a 101-tap FIR filter to match the 
bandwidth of the received RF signals before summation. We 
analyzed the cases of 30dB, 20dB, and 10dB per channel 
signal-to-noise ratios (SNR) before filtering. 

 

II. EXPERIMENTAL METHODS 
Experiments were performed using a Philips SONOS 5500 

imaging system employing a 6MHz linear array. The target 
consisted of a set of five 20µm diameter stainless steel wires 
(California Fine Wire Company, Grover Beach, CA) 
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suspended in a water tank at room temperature. The wires 
were placed at a distance of roughly 2.2cm from the 
transducer’s face. The imaging system was programmed to 
transmit on all 128 elements simultaneously to simulate a 
plane wave. The received data was obtained by stepping 
sequentially through each of the 128 receive channels. 
Received data was filtered using a 100-tap FIR filter with 
pass-band between 3 and 11MHz before beamforming. TONE 
was applied on a 32-processor SGI Altix server with the aid of 
the Star-P parallel computing platform (Interactive 
Supercomputing, Inc.). In all the experiments described here, 
the ROI was sampled with hypothetical targets placed every 

19µm axially (which corresponds to the temporal sampling 
rate of the system) and every 67µm laterally (one half of the 
element pitch). The array manifold matrix was constructed as 
follows. The reference waveform was obtained by measuring 
the response from a single steel wire in water (elevation 
effects were ignored). For every hypothetical target location 
within the ROI, the reference waveform was re-interpolated 
and delayed using the corresponding geometrical delay 
profile. No attempt was made to incorporate element angular 
response, attenuation, or spatial variations in the transmit 
beam in the array manifold matrix. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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(f) 

 Fig. 3. Simulated lateral resolution of TONE for a 32 element linear array operating at 5MHz with 70% bandwidth.  Hypothetical targets were placed every 
20µm axially and every 40µm laterally.  The left panels show the output images from a CBF, the central panels show the output image from TONE, and the right 
panels show axially integrated TONE images.  Set (a) shows the case where the point targets are separated by 50 µm; (b), (c), (d), (e), and (f) correspond to point 
target separations of 60 µm, 90 µm, 150 µm, 300 µm, and 1500 µm respectively.  Note that TONE lateral resolution is a function of the hypothetical target 
sampling.
 

I. RESULTS 
Figure 3 shows the results given by TONE for two ideal 

point targets with varying amounts of separation.  For these 
simulations, the hypothetical targets are placed every 20µm 
axially and every 40µm laterally.  None of the ideal point 
targets are aligned with any of the hypothetical targets.  
Although the two point targets are indistinguishable with only 
50µm of separation, they become resolvable with 60µm of 
separation and are fully resolved with 90µm of separation.  
This is nearly an order of magnitude improvement in 
resolution as compared to CBF with a 32 element linear array 
operating at 5 MHz with 150µm element pitch.  It is important 
to note that the final resolution of TONE is strongly dependent 
upon the hypothetical target sampling.  This suggests that a 
finer sampling than that used here would yield even finer 
resolution. Nonetheless, resolution is significantly improved 
using TONE, as demonstrated in figure 3. Furthermore, the 
results of these simulations suggest the following. In current 
ultrasound imaging there exists a trade off between spatial 
resolution and penetration depth. While higher frequencies 
produce images with higher spatial resolution, image depth is 
limited by the frequency dependent tissue attenuation. Since 
TONE’s final resolution is dependent upon hypothetical target 
sampling, it should be possible to use lower frequencies to 
increase penetration without sacrificing image resolution. 

Point targets simulation results are presented in figure 4. 
The top panel shows the spatial distribution of the points 
within the ROI. The points’ spacing ranged between 1mm and 
200µm in both dimensions. The middle panel of this figure 
depicts results obtained using conventional beamforming. 
Hann apodization was used on receive and dynamic receive 
focusing was applied. While some discrete points are 
detectable using this beamforming scheme, many are 
unresolved. The last image of figure 4 shows the TONE 
beamformed set of points. As figure 4 clearly indicates, TONE 
produces results with higher contrast and resolution when 
compared to the conventional technique. Nearly all the targets 
are clearly detectable, even when they do not lie at 
hypothetical target locations. 

As stated above, simulations were performed using a 32-

element aperture and a simulated plane wave on transmit. The 
use of a plane wave allowed for an easier and more compact 
description of the array manifold matrix, while the choice of 
the aperture size was dictated by the compromise between 
performance and computational complexity. Obviously, the 
use of a larger aperture will generate better images for the 
delay-and-sum beamformer. However, the improvement 
achieved through these conventional methods will still 
produce results that are inferior to those observed for TONE. 

Figure 5 depicts the results from the anechoic cyst phantom 
simulation. The cyst has a 1mm radius and is surrounded by 
scatterers. A schematic of the cyst phantom is shown in the 
top panel of this figure. The second and third panels show the 
conventional and TONE beamformed images, respectively. 
The conventional method provides enough resolution and 
contrast to detect the presence of an anechoic region, even 
though the shape and size of the original cyst is completely 
lost. In the case of TONE, the shape of the anechoic cyst is 
preserved and a series of point scatterers are visible 
surrounding the cyst. 

It is noticeable from figure 5 that the scatterers estimated 
using TONE do not correspond with the scattering map 
presented in the top panel of the figure. One possible 
explanation could be that hypothetical targets were placed too 
coarsely throughout the ROI. A finer sampling grid will yield 
a more dense distribution of point scatterers. It is also 
important to recall that amongst the infinite solutions of the 
underdetermined reconstruction, TONE converges toward the 
solution that minimizes the energy of the signal vector f , as 

expressed by equation (4). We also analyzed the amplitude 
histogram of the scatterers determined by TONE and found 
that they follow the expected zero mean Gaussian distribution. 

Additional simulations were performed to evaluate the 
robustness of the algorithm to additive noise. For this set of 
simulations, we analyzed the performance of TONE using 
both RF and In-phase/Quadrature (IQ) data. We have found 
empirically that complex demodulated IQ data yields the best 
results when applying TONE. This could be explained by the 
fact that RF signals possess higher frequency content than IQ 
signals. This implies that when a mismatch occurs between the 
model (i.e., the array manifold matrix) and the actual data, in 
this case due to the addition of noise, the RF signals degrade 
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faster than the IQ. The cost in this case is that IQ data occupy 
twice the memory required for RF signals since there is one 
real and one imaginary sample for every original RF sample. 
In figure 6 we show the results of the simulations when IQ 
data is used. In this figure, each panel corresponds to a 
different level of noise that was added to achieve a desired 
SNR. 

 

 

 
Fig. 4. Simulated point targets. The top panel shows the spatial configuration 
of the wire targets. The second and third panels show the results obtained with 
conventional beamforming and TONE, respectively. Images are displayed on 
a linear brightness scale. 
 

Panel (a) shows the ideal case, when no noise is added to 
the RF data and the two point targets are clearly visible at a 
depth of 22mm. In panel (b), bandlimited Gaussian noise was 
added in order to achieve a “per channel” SNR of 30dB. In 

this case, a cloud of scatterers forms surrounding the original 
point targets. As the SNR is decreased to 20dB (c) and 10dB 
(d) per channel, the cloud expands and covers a larger region. 
As expected, performance deteriorates as noise increases even 
though the original point target is accurately detected by 
TONE. 
 

 

 

 
Fig. 5. Simulated anechoic cyst in a speckle generating background. The top 
panel shows the spatial configuration of the anechoic cyst and the surrounding 
scatterers. The second and third panels show the results obtained with 
conventional beamforming and TONE, respectively. Images are displayed on 
a linear brightness scale. 
 

Experimental results are presented in figures 7 through 9. 
The top panel of figure 7 shows the conventional B-mode 
image of the five wires output by the Philips SONOS imaging 
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system, whereas the bottom panel shows the TONE 
reconstructed image. This result is similar to that obtained in 
figure 4 for simulated point targets. Although the five wire 
targets are clearly resolved by TONE, a small cloud of 
scatterers is visible around them. This is most likely due to 
noise and imperfection of the array manifold matrix used to 
reconstruct the imaging field. As stated above, the manifold 
matrix was generated by simply delaying and re-interpolating 

the response obtained from a single steel wire. More 
sophisticated models could be generated which would include, 
for example, the effects of element angular sensitivity. 
Furthermore, the current formulation of TONE is derived for a 
plane wave transmission. This was approximated in the 
experiments presented here by transmitting simultaneously on 
all 128 elements. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 6. Simulated robustness of TONE to additive noise. The additive noise was filtered to match the bandwidth of the received signals.  Complex demodulated 
signals were used to generate this set of figures. The left panels show the images generated by TONE while the right panels show their respective axially 
integrated images.  Set (a) shows the ideal case when no noise is added; (b), (c), and (d) correspond to “per channel” SNR levels of 30dB, 20dB, and 10dB, 
respectively.  Images are displayed on a linear brightness scale. 
 

We have also analyzed the performance of TONE as a 
function of mismatched speed of sound. In this case the array 
manifold matrix was constructed using a speed of sound that 
differs from the assumed true value of 1480m/sec. Results 

obtained for errors of 15m/s and 30m/s are shown in the top 
and bottom panels of figure 8, respectively. Obviously, as 
error increases performance starts to deteriorate. However, 
these results are significant since most adaptive beamforming 
algorithms rapidly degrade when ideal conditions are not met. 
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Fig. 7. Experimental comparison of conventional beamforming (top) and TONE beamformed (bottom) images of a set of five 20µm diameters stainless steel 
wires suspended in a water tank. In the case of TONE hypothetical targets were placed every 19µm axially and every 67µm laterally. Images are displayed on a 
linear brightness scale. 
 

Finally, we investigated the behavior of TONE with 
missing receive channels. While the images shown in figures 
7 and 8 were generated using the full 128 channels provided 
by the SONOS (135µm pitch), figure 9 shows the results 
obtained when the number of channels is reduced to 64, 32, 
16, 8, 4 and finally 2 (equally spaced channels using the full 
aperture). The corresponding element pitches are 270µm, 
540µm, 1.08mm, 2.43mm, 5.67mm, and 17.15mm 
respectively. This figure suggests that TONE performance is 
not affected by variations in channel number/pitch 
dimensions. While applying conventional beamforming on 8 
receive channels with 2.43mm pitch would result in massive 
grating lobes, this figure shows that TONE remains almost 
unaffected. The five wires are also detectable when only 4 
receive channels are used for the reconstruction, but the 
reconstruction fails when only 2 receive channels are used. 
We hypothesize that in the case of 2 channels, the received 
data does not hold sufficient information about the spatial 
responses of the actual scatterers within the ROI therefore 
disrupting the reconstruction process. It also appears from this 
figure that using 16 or fewer channels reduces the amount of 
clutter around the wires. In this case we hypothesize that there 
are two main factors to consider. First, by reducing the 
number of receive channels, small errors in the definition of 
the spatial responses become less significant compared to the 
case of the full aperture (or to the case of higher channel 

count). However, reducing channel count will eventually 
diminish the available information, as shown in the bottom 
panel for 2 channels. Nonetheless, the result presented in this 
figure could be important for two-dimensional arrays that rely 
on sparsity to reduce channel count. 

 

I. DISCUSSION 
The results presented in this paper show that under the 

analyzed conditions TONE outperforms conventional delay-
and-sum beamforming. TONE assumes an observation model 
based superposition of spatial responses as indicated by 
equation (1). This model is then used to formulate a MAP 
algorithm that finds the distribution and amplitude of 
hypothetical targets that matches the observed data with 
minimal target energy. It is important to note that even though 
TONE uses such linear model, it is possible to model effects 
such as attenuation and non-linear propagation by simply 
redefining each of the columns (i.e., the spatial responses) of 
the array manifold matrix. In other words, the individual 
spatial responses can be constructed ad hoc to model any 
particular imaging scenario; TONE assumes that the received 
data set can be modeled as the superposition of those 
individual responses and that the first Born approximation 
regarding secondary scattering is satisfied. Furthermore, while 
other linear models have been described that specifically 
include the effects of noise [42, 43], these effects were not 
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included in the work presented here. We are currently 
working toward extending the mathematical formulation of 
TONE to specifically include the contribution of noise. 

 
 

 

 
Fig. 8. Experimental assessment of sensitivity to errors in speed of sound. TONE beamformed images of the five steel wires with no error (top), 15m/s (middle), 
and 30m/s (bottom) mismatch in speed of sound. Images are displayed on a linear brightness scale. 
 
 

The experimental TONE images shown in this paper reveal 
small amounts of clutter surrounding the wire targets, which 
causes a reduction in the effective contrast of the images.  One 
possible cause for this clutter is the sparseness of the grid of 
hypothetical targets.  Unless the point target lies exactly on 
one of the hypothetical targets, it is not possible for TONE to 
perfectly match the data to the system model.  It would be 
logical to assume that, when the point target lies between 
hypothetical targets, TONE would distribute energy to the 
hypothetical targets directly surrounding that target.  
However, due to the coherent nature of the system, it is 
possible that the sum of many hypothetical targets in a diffuse 
cloud around the actual target would produce a more optimal, 
lower energy solution.  One way to reduce this effect is to 

treat each hypothetical target as a diffuse set of scatterers.  
Instead of each column of the manifold matrix being the 
system response from a single target, it would instead be the 
system response from a weighted set of scatterers surrounding 
that single point target.  Therefore, when a point target lies 
between two hypothetical targets, TONE would be more likely 
to distribute energy to the targets directly surrounding that 
target, thereby reducing clutter in the output image.  Although 
this modification would require more computation upfront, the 
manifold matrix would not change in size.  If we pre-compute 
this manifold matrix and keep it stored, there would be no 
change in the computation time to beamform the data. 
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Fig. 9. Experimental assessment of sparsity. TONE beamforming of the five steel wires with (from top to bottom): 64, 32, 16, 8, 4, and 2 receive channels. 
Images are displayed on a linear brightness scale. 
 

The images presented here also demonstrate increased 
spatial resolution of TONE when compared to conventional 
beamforming. While resolution in conventional beamforming 
is easily represented, resolution of TONE is much more 
complicated. We hypothesize that there is a resolution bound 
on TONE and other advanced beamforming algorithms that 
estimate the target field, similar to the bound currently 
available for time delay estimation. The key is that TONE is 
an estimation problem, not a simple beamformer. As shown in 
this paper, we have empirically found that sampling of the 
hypothetical target field, SNR, and model quality all impact 
apparent resolution. 

Currently, the main limitation of TONE is its high 
computational complexity. The experimental images shown in 
this paper were obtained after roughly 22 minutes of 
computation on the high power cluster provided by Interactive 
Supercomputing. Furthermore, while higher spatial resolution 
is achieved by using finer sampling of the ROI, this also 
incurs higher computational complexity. In our experience, 
the generation of the manifold matrix and the iterative 
procedure to estimate f  represent the most costly steps. For 

an image region of 1cm by 1cm and assuming a sampling grid 
of hypothetical targets of 20µm by 70µm, V  is on the order 
of 64K by 71K elements for a total of 4,544M elements. 
However, for a given ROI and desired sampling grid, the 
manifold matrix can be calculated in advance and stored for 
later use, reducing the computational cost for most 
applications. Furthermore, TONE may also be applied to a 

given receive data set using a variety of iterative approaches 
to reduce the required computational complexity and data 
storage size. In one such approach the complete received data 
set is subdivided into multiple data segments that may or may 
not be uniformly sampled and may or may not overlap. For 
each received data segment, a distinct array manifold matrix 
would be formed to represent the responses from hypothetical 
targets which contribute to the specific data segment. TONE 
could then be applied separately to each of the data segments 
and their matched array manifold matrices. We are currently 
investigating this and other approaches. 

 

I. CONCLUSIONS 
The application of advanced beamforming methods in 

medical ultrasound can significantly improve overall image 
quality. Most of the adaptive algorithms developed for 
RADAR and SONAR fail when applied to medical ultrasound 
data. This can be attributed to some or all of the following 
factors: ultrasound operates in a near-field scenario, signals 
are broad-band, and ultrasound has limited statistical 
information available. 

In this paper we have presented an algorithm, named 
TONE, which is well suited to medical ultrasound since it 
requires neither a far-field/narrow-band assumption nor 
second order statistics of the signals. Under all the simulations 
and experiments performed, TONE showed a significant 
improvement in resolution and contrast when compared to 
conventional, data independent beamforming. 
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A Spline-Based Approach for Computing
Spatial Impulse Responses

Michael A. Ellis, Drake Guenther, and William F. Walker, Member, IEEE

Abstract—Computer simulations are an essential tool
for the design of phased-array ultrasonic imaging systems.
FIELD II, which determines the two-way temporal response
of a transducer at a point in space, is the current de facto
standard for ultrasound simulation tools. However, the need
often arises to obtain two-way spatial responses at a single
point in time, a set of dimensions for which FIELD II is
not well optimized. This paper describes an analytical ap-
proach for computing the two-way, far-field, spatial impulse
response from rectangular transducer elements under arbi-
trary excitation. The described approach determines the
response as the sum of polynomial functions, making com-
putational implementation quite straightforward. The pro-
posed algorithm, named DELFI, was implemented as a C
routine under Matlab and results were compared to those
obtained under similar conditions from the well-established
FIELD II program. Under the specific conditions tested
here, the proposed algorithm was approximately 142 times
faster than FIELD II for computing spatial sensitivity func-
tions with similar amounts of error. For temporal sensitiv-
ity functions with similar amounts of error, the proposed
algorithm was about 1.7 times slower than FIELD II us-
ing rectangular elements and 19.2 times faster than FIELD
II using triangular elements. DELFI is shown to be an at-
tractive complement to FIELD II, especially when spatial
responses are needed at a specific point in time.

I. Introduction

The design of modern, phased-array ultrasonic imaging
systems relies heavily on the use of computer simula-

tions. This is necessary because the broadband and near-
field nature of most clinical imaging environments severely
limits the utility of the Fraunhofer approximation [1] and
other theoretical methods. Furthermore, the high degree
of optimization of modern systems makes even small devi-
ations from such theory significant. For example, if the
system designer is concerned with the array sensitivity
pattern down 80 dB from the main-lobe, then a devia-
tion from theory of only 0.1% (−60 dB) will significantly
affect performance and make optimization to the desired
level impossible. Clearly, highly accurate simulation tools
are required to guide the selection of transducer geometry,
apodization, operating frequency, and other parameters.
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ing, University of Virginia, Charlottesville, VA (e-mail: mae3x@
virginia.edu).
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Although most researchers and designers would agree
upon the need for accurate simulation, the appropriate
approach depends upon the specific problem of interest
and the parameters that are most significant to that prob-
lem. For example, in cases in which details of transducer
vibration and crosstalk are of interest, a computationally
costly, finite-element analysis may be required to capture
the most relevant behavior. For such problems, the highly
optimized PZFlex (Weidlinger Associates, Inc., New York,
NY) package is widely used [2]. In other cases, in which
the detailed transducer response is of less interest—but the
propagation medium is inhomogeneous or multiple scatter-
ing occurs—the more computationally efficient finite dif-
ference method, such as that implemented in Wave2000
(CyberLogic Inc., New York, NY), may be used [3]. Of-
ten, the motivation for adopting more computationally de-
manding approaches is to account for nonlinear phenom-
ena and inhomogeneities in the simulated environment.

For the vast majority of situations, in which the system
can be modeled as linear and the propagation medium
can be considered homogeneous or inhomogeneities can
be modeled as a near-field, thin, phase screen, Stepan-
ishen’s method [4], as implemented in Jensen and Svend-
sen’s FIELD II program [5] has become a standard in ul-
trasound. This approach determines the spatial impulse
response of each transmit element, convolves this with the
spatial impulse response of each receive element, convolves
this result with the transmitted pulse, and convolves this
with the transmit and receive electromechanical impulse
responses to determine the two-way temporal response at a
point in space. This technique, as implemented in Jensen’s
code, has been highly refined over roughly a decade of de-
velopment so that it is extremely efficient and available
in a compiled form on a variety of computer platforms
(http://www.es.oersted.dtu.dk/staff/jaj/field/). By com-
puting the temporal signals returned from various target
locations, FIELD II readily models common experimental
situations.

Although the temporal response returned by FIELD II
provides an excellent parallel to experiment, recent theo-
retical work by Zemp et al. [6] and Walker [7] highlights
the importance of considering the full four or five dimen-
sional system response. In a previous paper [7], we derive
a method for predicting speckle correlation levels for shift
variant systems using point spread functions defined as
functions of three spatial dimensions and time. Although
much of this detail is hidden experimentally, the consid-
eration of the full dimensionality of the system response

0885–3010/$25.00 c© 2007 IEEE
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yields insights and offers paths for analysis that are not ap-
parent in the more conventional two-dimensional (space,
time) view of the system. Zemp et al. [6] carried this con-
cept one step further, including another dimension for im-
age line index, thereby further clarifying system behavior.
Our laboratory recently applied these frameworks to de-
rive a general resolution metric that allows quantitative
comparison of system performance, even when the individ-
ual impulse responses of those systems are very different
in structure [8]. Interestingly, this new resolution metric
is based upon the system response throughout space at a
single instant in time; a form of the impulse response that
is not naturally determined by FIELD II. Although such
responses can be computed by sampling the temporal re-
sponses generated by FIELD II, this approach is extremely
costly in terms of both computation and storage.

In this paper, we describe a new approach to comput-
ing spatial impulse responses that directly determines the
response throughout space at a single instant in time. This
approach is complementary to FIELD II, simply yielding
responses in a different set of dimensions. Because results
from this code are predictive of system performance and
are a permutation of the data available from FIELD II,
we name this code DELFI. In this paper, we describe the
theoretical underpinnings of the DELFI code, describe im-
plementation, and validate the code through comparisons
with FIELD II. We discuss the relative computational ef-
ficiency of DELFI and discuss future directions for devel-
opment and refinement.

II. Theory

We begin our derivation by considering the general ap-
proach used by Jensen in the FIELD II program [5]. We
consider the system response for a specific transmit-receive
element pair to be a four-dimensional function of space and
time:

p(x, y, z, t) =
e(t) ∗

t
mt(t) ∗

t
mr(t) ∗

t
ht(x, y, z, t) ∗

t
hr(x, y, z, t), (1)

where x, y, and z are the three spatial dimensions, t is
the time for a given line (proportional to range in the
beamformed image), p(x, y, z, t) is the system point spread
function (psf), e(t) is the electrical excitation of the trans-
mit element, mt(t) and mr(t) are the electromechanical
transfer functions of the transmit and receive elements,
respectively, ht(x, y, z, t) and hr(x, y, z, t) are the spatial
impulse responses of the transmit and receive elements,
respectively, and ∗

t
indicates convolution in the time di-

mension. In typical systems the excitation and the trans-
mit and receive electromechanical transfer functions are
assumed constant for all elements of the array. Thus we
can convolve these terms together before computing the
overall response with little loss in generality. Performing
this step we simplify (1) to yield:

p(x, y, z, t) = emmtr(t) ∗
t
ht(x, y, z, t) ∗

t
hr(x, y, z, t),

(2)

where emmtr(t) is the combined effect of the excitation
and the transmit and receive electromechanical trans-
fer functions and can be represented mathematically as
emmtr(t) = e(t) ∗

t
mt(t) ∗

t
mr(t). Although FIELD II com-

putes expressions (1) or (2) using sampled versions of each
of the component signals, we take an alternate approach
instead using analytical expressions for these functions.

The utility of an analytical approach depends upon the
choice of expressions used; they must be general enough
to include all relevant cases, but they must be constrained
in such a way to guarantee the presence of an analyti-
cal solution. Because (2) allows for consideration of most
practically interesting cases and requires two convolutions
[rather than the four convolutions of (1)], we build our al-
gorithm upon this expression. Further simplification can
be made by assuming that the point of interest lies in the
far-field of both the transmit and receive elements. This
is not an onerous assumption because cases in which the
response would lie in the near-field of a physical element
can be readily modeled using a superposition of computa-
tional elements for which the far-field assumption is valid.
We further simplify the problem by assuming that the el-
ements are rectangular.

Following these assumptions and once again drawing
upon the methodology of Jensen [5], we recognize that the
one-way spatial impulse response of an element takes on
one of three functions. If the field point lies on the line
perpendicular to the element face and passing through its
center, the spatial impulse response as a function of time
is simply a delta function, as shown in the left panel of
Fig. 1. If the field point does not fulfill the first condition,
but instead lies upon one of two planes passing through the
element center and perpendicular to the element edges, the
spatial impulse response in time is a rectangle function, as
depicted in the central panel of Fig. 1. If the field point
fulfills neither of these conditions, the spatial impulse re-
sponse in time is a trapezoid function, as shown in the right
panel of Fig. 1. These possible one-way spatial impulse re-
sponses are summarized mathematically below. Note we
describe the rectangle and trapezoid functions using sums
of unit step and ramp functions:

h0(x, y, z, t) = A0(x, y, z)δ(t − t0), (3)

h1(x, y, z, t) = A1(x, y, z)u(t − t1,0)
− A1(x, y, z)u(t − t1,1),

(4)

h2(x, y, z, t) = (t − t2,0)A2(x, y, z)u(t − t2,0)
− (t − t2,1)A2(x, y, z)u(t − t2,1)
− (t − t2,2)A2(x, y, z)u(t − t2,2)
+ (t − t2,3)A2(x, y, z)u(t − t2,3),

(5)

where h0, h1, and h2 represent the delta, rectangle, and
trapezoid spatial impulse responses, respectively, and u(t)
is the unit step function. The scaling functions A0(x, y, z),
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Fig. 1. Geometries for determining the one-way spatial impulse response of an individual array element. In the left panel, the field point
lies on the line through the element’s center and perpendicular to its face. In the center panel, the field point does not satisfy the first
condition but lies on a plane that bisects the element and is perpendicular to its face. In the right panel, the field point lies at any location
not satisfying either of the first two conditions.

A1(x, y, z), and A2(x, y, z) are constant at any specific spa-
tial location and include 1/r spreading, scaling to account
for the element size, and an obliquity factor to account
for a soft transducer baffle [9], if desired. The time delay
t0 present in (3) is determined by the speed of sound and
the distance from the element center to the field point.
Similarly, the delays present in (4) and (5) are determined
from the speed of sound and distances between the field
point and the element edges and corners, respectively. It
is important to note that these descriptions of the impulse
response are valid only in the very far-field.

To determine the two-way response from an element
pair, we must convolve the appropriate version of (3)–(5)
for the receive element with the appropriate version of (3)–
(5) for the transmit element. Although superficial analysis
suggests that nine permutations are possible, a more care-
ful examination reveals that, as the order of convolution
is irrelevant, some of these permutations are redundant.
Thus, the two-way response must fit one of the following
six general expressions:

htr = ht ∗
t
hr ={

h0 ∗
t
h0 or h0 ∗

t
h1 or h0 ∗

t
h2 or h1 ∗

t
h1 or h1 ∗

t
h2 or h2 ∗

t
h2,

(6)

where we have dropped space and time references to sim-
plify notation. Note that, although the simplified nota-
tion of (6) suggests that, in some cases (such as h2 ∗

t
h2),

the transmit and receive responses are identical, this is
intended to state only that the transmit and receive re-
sponses fit the same function; they may have different de-
lays and scaling. Substituting (3)–(5) into (6) yields a set
of six possible two-way impulse responses:

h0a ∗
t
h0b

= A0aA0b
δ (t − t0a − t0b

) , (7)

h0 ∗
t
h1 = A0A1

1∑
j=0

(−1)ju(t − t0 − t1,j), (8)

h0 ∗
t
h2 = A0A2

3∑
j=0

cj(t − t0 − t2,j)u(t − t0 − t2,j),
(9)

h1a ∗
t
h1b

= A1aA1b

1∑
j=0

1∑
k=0

(−1)j(−1)k(t − t1a,j

− t1b,k)u(t − t1a,j − t1b,k),

(10)

h1 ∗
t
h2 = A1A2

1∑
j=0

3∑
k=0

(−1)jck(t − t1,j

− t2,k)2u(t − t1,j − t2,k),

(11)

h2a ∗
t
h2b

= A2aA2b

3∑
j=0

3∑
k=0

cjck(t − t2a,j

− t2b,k)3u(t − t2a,j − t2b,k),

(12)

where cj = {1 for j = 0 or 3 and −1 for j = 1 or 2}.
With each of the six possible two-way impulse responses
in hand, we now can consider an appropriate analytical
representation of the excitation function (including trans-
mit and receive electromagnetic transfer functions). While
a number of possible functions are attractive, we choose
to represent emmtr(t) using cubic splines [10]. This repre-
sentation is attractive because it allows arbitrary function
shapes while restricting the form of the function to be no
higher order than piecewise cubic polynomial. Writing this
spline representation explicitly yields:

emmtr(t) =
M1∑

j=M0

(
αj + βjt + γjt

2 + δjt
3) (

u(t − j∂)

− u(t − (j + 1)∂)
)
, (13)
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where αj , βj , γj , and δj are the spline coefficients, M0 and
M1 are the first and last spline indices, and j∂ is the spline
to spline interval. We now can complete an analytical ex-
pression for (2) by convolving (13) with the appropriate
version of (7)–(12). Although such a convolution appears
quite tedious, it can be readily performed using Laplace
transforms [11]. The resulting expression is a sum of 3rd,
4th, 5th, 6th, or 7th order polynomials (multiplied by unit
step functions), with the polynomial order depending upon
the combination of element responses used. The analytical
forms of these expressions are included in the Appendix,
although for brevity’s sake only one of the summands in
each of (8) through (12) is presented. The final expressions
can be obtained through superposition of the results from
the other summands. Using these final polynomial expres-
sions, the complete two-way response for a given transmit-
receive element pair can be computed by simply summing
polynomials.

III. Validation

The proposed algorithm was implemented in a C routine
called as a mex file within Matlab (The MathWorks, Inc.,
Natick, MA). This approach allowed us to readily gener-
ate array geometries and visualize results within Matlab,
while taking advantage of the increased computational ef-
ficiency of compiled C. All calculations were performed in
IEEE standard double precision floating point arithmetic.
All simulations were performed on an IBM x335 (IBM Cor-
poration, Armonk, NY) with dual Intel Xeon 2.4 GHz pro-
cessors (Intel, Inc., Santa Clara, CA) and 2 GB PC2100
SDRAM, running Matlab 7.2 under Red Hat Enterprise
Linux 3 update 5 (Red Hat, Inc., Raleigh, NC).

The validity of the proposed algorithm was tested by
comparing the two-way spatial response of a single two-
dimensional (2-D) array element as predicted by DELFI,
FIELD II using rectangular elements, and FIELD II us-
ing triangular elements with a “gold standard.” The “gold
standard” used here was the response from FIELD II us-
ing triangles, sampled at 10 GHz temporally [12]. Because
FIELD II using triangular elements does not make a far-
field assumption, it is a very accurate model for the true
analytical response and is valid in the near-field. At a sam-
pling rate of 10 GHz, the sharp transitions in the responses
are well captured, and this method becomes a suitable
“gold standard.”

For all responses, the array element was modeled using
a single 300×300 µm computational element. All responses
also assumed a combined excitation and transmit/receive
electromechanical impulse response equal to a 5.0 MHz
sine multiplied by an 8-cycle Nuttall window [13]. This was
achieved by windowing a sinusoid, then using the spline()
command within Matlab. The system response was de-
termined in polar coordinates over an angle of 0◦ to 90◦

(sampled at 0.45◦) covering a range from 19.925 cm to
20.075 cm (sampled at 10 µm). This space is an arc of
thickness 1.5 mm that exists in the plane perpendicular to

the element face, passing through the element center and
the center of one of the element edges. Responses were eval-
uated over this 2-D spatial region at a single instant in time
(space-space) as well as along the 1-D spatial arc in the
center of this region throughout time (space-time). Both
space-space and space-time responses were evaluated over
a range of temporal sampling frequencies from 20 MHz to
1 GHz. For DELFI, all points in the space-space response
were computed at the time instant that centered the ele-
ment response at 20 cm, and all points in the space-time
response were computed by running the code repeatedly
at different time points to generate a waveform at the tem-
poral sampling frequency of interest. For both FIELD II
codes, a complete response in range, azimuth, and time
was computed, with the time that centered the sensitivity
function at 20 cm selected for analysis in the space-space
response.

Typical spatial sensitivity functions from DELFI and
FIELD II using rectangular elements for the parameters
given above are shown in Fig. 2. Both responses have been
normalized to allow comparison. These responses are quite
similar, except for a series of artifacts located about the
0◦ line in the FIELD II response. Although the source of
this artifact is not apparent, it may result from the correc-
tions FIELD II uses when sampling the infinite bandwidth
spatial impulse responses of the array elements. Such ar-
tifacts are avoided in DELFI by evaluating a continuous
time representation for the impulse response.

Simulations were performed over a range of temporal
sampling frequencies from 20 MHz to 1 GHz to deter-
mine computation times and error in the responses as
compared to the “gold standard.” All computational times
were estimated using the tic and toc commands in Matlab.
The accuracy of each response was determined by com-
puting the normalized sum squared error with respect to
the “gold standard.” To ensure proper alignment of the
responses when measuring error, time delay estimation
was performed using normalized sum squared error with
splines [14].

Across the set of 12 space-space simulations, the nor-
malized sum squared errors for DELFI ranged from ap-
proximately 1.44% to 0.14%, as shown in Fig. 3. Over the
same set of conditions FIELD II errors ranged from 21.89%
to 0.26% using rectangles and 21.05% to 2.02% using trian-
gles. To achieve an error similar to that of DELFI sampled
at 40 MHz, FIELD II using rectangles must be sampled at
800 MHz. Comparing computation times at these respec-
tive sampling rates, DELFI is about 142 times faster than
FIELD II using rectangles. In the sampling range covered,
FIELD II using triangles does not achieve an error similar
to that of DELFI so such a comparison of computation
times was not made. Note that these times do not include
any array definitions or other housekeeping operations.

It may seem counterintuitive that FIELD II using
triangles—an exact analytical solution that does not make
use of a far-field approximation—should have errors as
large as 21%. However, we must remember that these im-
pulse responses have sharp transitions that must be ap-
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(a) (b)

Fig. 2. The spatial impulse response of a 300 µm square array element in a soft baffle for an 8 cycle Nuttall windowed 5.0 MHz transmit pulse.
The left panel depicts the output of the proposed algorithm (DELFI). The right panel indicates the output of FIELD II using rectangles.
Both responses have been normalized to allow easy comparison. The responses are nearly identical, with the exception of localized artifacts
near the 0◦ line of the FIELD II response.

propriately sampled to avoid aliasing errors. The “gold-
standard” is sampled temporally at 10 GHz, but here, we
are considering sampling rates as low as 20 MHz, which
result in large aliasing errors in the responses from FIELD
II using triangles.

The default sampling rates for DELFI and FIELD II us-
ing rectangles are 40 MHz and 100 MHz, respectively. At
these rates, these codes have an error of 0.16% and 1.6%
and computation times of 0.1 and 5.8 seconds, respectively,
for space-space simulations. So, operating at default sam-
pling frequencies, DELFI is 58 times faster with 10 times
less error than FIELD II using rectangles for space-space
simulations.

For the sake of comparison, we also computed the tem-
poral response using all three codes along the arc 20 cm
from the element center, sweeping from 0◦ to 90◦ with re-
spect to the line perpendicular to the element face and
passing through its center. Across the set of 12 space-time
simulations, the normalized sum squared errors for DELFI
ranged from approximately 0.76% to 0.04%, as shown in
Fig. 4. Over the same set of conditions, FIELD II errors
ranged from 19.21% to 0.04% using rectangles and 19.18%
to 0.05% using triangles. To achieve an error similar to
that of DELFI sampled at 40 MHz, FIELD II using rect-
angles must be sampled at 400 MHz and FIELD II using
triangles must be sampled at 300 MHz. Comparing com-
putation times at these respective sampling rates, DELFI
is about 1.7 times slower than FIELD II using rectangles
and 19.4 times faster than FIELD II using triangles.

Again comparing DELFI and FIELD II using rectangles
at their default rates, these codes have an error of 0.06%
and 0.78% and computation times of 0.064 and 0.012 sec-
onds, respectively, for space-time simulations. So, operat-
ing at default sampling frequencies, DELFI is 5.3 times
slower with 13 times less error than FIELD II using rect-
angles for space-time simulations.

IV. Discussion

Validation of a simulation tool is not a simple task as
not one method stands out as the best. As the simula-
tion tool is designed to predict true system behavior, one
might argue that comparison to experimental data would
serve as the best metric. However, experimental data con-
tains artifacts caused by many nonidealities such as ele-
ment nonuniformity. Comparing simulation results to ex-
perimental data, thus, would produce errors specific to one
system. A simulation tool, however, is used to predict gen-
eral system behavior so such a comparison would not be
useful for all readers.

Instead, we have decided to compare our simulation tool
to one that is well established and makes few assumptions
in computing the theoretical field from an ultrasound sys-
tem. The only assumption made in FIELD II using trian-
gles is that the element is a planar piston vibrating uni-
formly in an infinite rigid planar baffle into a homogeneous,
nonattenuating medium. As a result, the only source of
error, aside from those caused by nonidealities, is the tem-
poral sampling frequency, as there are sharp transitions
in the impulse response that must be sampled appropri-
ately. As the purpose of a simulation tool is to help steer
the decisions of ultrasound system designers by predict-
ing general system behavior, it should be as accurate as
possible without becoming too specific to any one system.
Thus, FIELD II using triangles was chosen as the “gold
standard” from which to determine DELFI’s accuracy.

Computing the spatial impulse response of a transmit-
receive element pair by convolving (13) with (7)–(12) ana-
lytically offers both advantages and disadvantages relative
to the established approach using discrete time convolu-
tion. On the positive side, the analytical approach allows
direct computation of the response at a single instant in
time. In contrast, the conventional discrete time approach
(at least as currently implemented) requires the computa-
tion of a full temporal response, even if only a single time
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(a)

(b)

Fig. 3. Comparison of DELFI and FIELD II performance when
computing space-space impulse responses over a range of tempo-
ral sampling frequencies. The top panel shows the normalized sum
squared error with respect to FIELD II using triangles and sampled
at 10 GHz. The bottom panel shows the computation time for each
of the codes. To achieve an error similar to that of DELFI sampled
at 40 MHz, FIELD II using rectangles must be sampled at 800 MHz.
Comparing computation times at these respective sampling rates,
DELFI is about 142 times faster than FIELD II using rectangles.
In the sampling range covered, FIELD II using triangles does not
achieve an error similar to that of DELFI.

point is required. An additional advantage of the analyt-
ical approach is that it yields an exact solution, at least
within the numerical precision of the computer used for the
calculation and within the limitations of the far-field ap-
proximation. In contrast, the discrete time approach uses
under-sampled versions of the element responses and thus
introduces some error. In addition, the discrete implemen-
tation makes it difficult to compute the spatial response
at any exact instant in time. A relative weakness of the
analytical approach is that more computation is required
to determine a temporal response at a single location.

(a)

(b)

Fig. 4. Comparison of DELFI and FIELD II performance when com-
puting space-time impulse responses over a range of temporal sam-
pling frequencies. The top panel shows the normalized sum squared
error with respect to FIELD II using triangles and sampled at
10 GHz. The bottom panel shows the computation time for each
of the codes. To achieve an error similar to that of DELFI sampled
at 40 MHz, FIELD II using rectangles must be sampled at 400 MHz
and FIELD II using triangles must be sampled at 300 MHz. Com-
paring computation times at these respective sampling rates, DELFI
is about 1.7 times slower than FIELD II using rectangles and 19.4
times faster than FIELD II using triangles.

It should be noted that DELFI is, for the most part,
independent of sampling frequency due to its use of an
analytical solution. In Fig. 3, however, we see that the
accuracy of DELFI begins to suffer at a sampling rate of
20 MHz. This artifact is due to inaccuracies in the splining
of the transmitted pulse for lower sampling frequencies.
Although this sampling rate meets the Nyquist criterion,
the splined pulse has small errors due to it having too few
spline knots. As a result, the accuracy of DELFI suffers for
temporal sampling rates that are too close to the Nyquist
rate.
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The current DELFI code determines the result of the
convolution of a single spline segment with two trapezoid
functions by summing 16 7th order polynomials. This ap-
proach is computationally tedious and subject to numeri-
cal instability. Such instabilities occur only when summing
the higher order polynomials evaluated at very small time
differences. For example, instability occurs when the sides
of the trapezoidal responses are very steep or the rect-
angular response is very narrow in time. To help reduce
these instabilities, a minimum time difference parameter is
passed into DELFI to determine how the response should
be modeled. For example, if the temporal width of rectan-
gle function is smaller than this minimum time parameter,
the response will instead be modeled as a delta function.
This would imply that the response would be modeled as
a delta function not just along the line through the center
of the element, perpendicular to its face, but in a small
volume around that line as well. Increasing the minimum
time parameter increases this spatial volume. The same
spatial broadening occurs for the region in which the re-
sponse would be modeled as a rectangle function. This ap-
proach effectively increases the error in the physical model
in order to reduce the much greater numerical error.

An alternative method of implementation that would
reduce both numerical instabilities and computation time
is to use sums of triangles and rectangles instead of ramps
and unit impulses. Using this approach, a trapezoid re-
sponse would be modeled as two triangles and a rectangle,
instead of as four ramp functions. This method will reduce
the numerical instabilities in the code by summing polyno-
mials of finite extent rather than those of infinite extent,
as currently implemented. This change becomes especially
significant with the highest order polynomials, as in (11)
and (12), because they tend to saturate the dynamic range
of double precision floating point numbers when they are of
significant extent. Additionally, this method would provide
computational savings by reducing the number of polyno-
mials summed to form a response. The convolution of a
single spline segment with two trapezoid functions would
involve a summation of 9 seventh order polynomials rather
than the 16 required in the current implementation. This
approach could cut the computation time nearly in half,
although some additional overhead would be required.

Another possible direction for improvement would be-
gin with the recognition that the first half of this response
(in time) requires only 8 polynomials for synthesis. Next,
by considering the response in negative time, it is appar-
ent that the second half of this response (again in time)
also requires only 8 polynomials. Together this realization
could cut computation time in half. Additional computa-
tional savings are undoubtedly possible.

Algorithmic accuracy could be enhanced by utilizing
a more sophisticated model for the element impulse re-
sponses. Spline functions might prove particularly suitable
for modeling complicated near-field responses [15], [16]. Al-
ternatively, ramp functions or the triangle and rectangle
functions described above could be used to form a lin-
ear approximation to the more complicated near-field re-

sponses. Because DELFI already makes use of ramp func-
tions, such a change would not be major.

A version of DELFI that simulates one-way spa-
tial responses, rather than two-way, also has been writ-
ten. This version is less susceptible to numerical in-
stabilities due to the use of lower order polynomials.
At the time of publication, the source code for both
one-way and two-way DELFI is available under a gen-
eral public license on the Mathworks File Exchange
(http://www.mathworks.com/matlabcentral/fileexchange)
by searching for DELFI.

V. Conclusions

The DELFI code presented here uses analytical convolu-
tion of cubic spline functions with continuous time-element
responses to compute the two-way spatial impulse response
of ultrasound transducers. Comparison with FIELD II
shows that the proposed algorithm performs comparably
to existing methods. For the computation of impulse re-
sponses at a single instant in time, the proposed algorithm
is about 142 times faster than FIELD II for similar error.
For computing temporal responses, the proposed code is
approximately 1.7 times slower than FIELD II for similar
error, although further refinement may reduce this mis-
match. When operating at the default sampling frequen-
cies to generate space-space responses, DELFI is 58 times
faster with 10 times less error than FIELD II. Generat-
ing space-time responses at the default sampling rates,
DELFI is 5.3 times slower with 13 times less error than
FIELD II. The proposed algorithm, as implemented by
the DELFI code, offers an attractive complement to the
well-established FIELD II program, especially when spa-
tial responses are needed at a specific point in time.

Appendix A

The following equations are the analytical expressions
resulting from the convolution of the two-way impulse re-
sponses (7)–(12) with the cubic spline polynomial (13).
For the sake of brevity, the cubic spline polynomial is con-
volved with only one of the summands in (7)–(12). The
final analytical expressions for the impulse responses can
be obtained through superposition with the results from
the other summands.

emmtr(t) ∗
t
h0a ∗

t
h0b

=

A0aA0b

M1∑
j=M0

(
αj + βj (t − t0a − t0b

) + γj (t − t0a − t0b
)2

+ δj (t − t0a − t0b
)3

)(
u (t − t0a − t0b

− j∂)

− u (t − t0a − t0b
− (j + 1)∂)

)
(A1)
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emmtr(t) ∗
t
h0 ∗

t
h1 =

A0A1

M1∑
j=M0

[
αj (t − t1) +

1
2
βj (t − t1)

2

+
1
3
γj (t − t1)

3 +
1
4
δj (t − t1)

4

+ j∂ (t − t1)
(
βj + γj (j∂ + t − t1)

+ δj

(
(j∂)2 + j∂ (t − t1) + (t − t1)

2
) )]

u (t − t1)

−
[
αj (t − t2)+

1
2
βj (t − t2)

2+
1
3
γj (t − t2)

3+
1
4
δj (t − t2)

4

+ (j + 1)∂ (t − t2)
(
βj + γj ((j + 1)∂ + t − t2)

+ δj

(
((j + 1)∂)2 + (j + 1)∂ (t − t2) + (t − t2)

2
) )]

× u (t − t2) (A2)

where

t1 = j∂ + t0 + t10

t2 = (j + 1)∂ + t0 + t10

emmtr(t) ∗
t
h0 ∗

t
h2 =

A0A2

M1∑
j=M0

[
1
2
αj (t − t1)

2 +
1
6
βj (t − t1)

3

+
1
12

γj (t − t1)
4 +

1
20

δj (t − t1)
5

+ j∂ (t − t1)
2

(
1
2
βj + γj

(
j∂

2
+

t − t1
3

)

+ δj

(
(j∂)2

2
+

j∂ (t − t1)
2

+
(t − t1)

2

4

))]
u (t − t1)

−
[

1
2
αj (t − t2)

2 +
1
6
βj (t − t2)

3

+
1
12

γj (t − t2)
4 +

1
20

δj (t − t2)
5

+ (j + 1)∂ (t − t2)
2

(
1
2
βj + γj

(
(j + 1)∂

2
+

t − t2
3

)

+ δj

(
((j + 1)∂)2

2
+

(j + 1)∂ (t − t2)
2

+
(t − t2)

2

4

))]

× u (t − t2) (A3)

where

t1 = j∂ + t0 + t10

t2 = (j + 1)∂ + t0 + t10

emmtr(t) ∗
t
h1a ∗

t
h1b

=

A1aA1b

[
1
2
αj (t − t1)

2 +
1
6
βj (t − t1)

3 +

1
12

γj (t − t1)
4 +

1
20

δj (t − t1)
5

+ j∂ (t − t1)
2

(
1
2
βj + γj

(
j∂

2
+

t − t1
3

)

+ δj

(
(j∂)2

2
+

j∂ (t − t1)
2

+
(t − t1)

2

4

))]
u (t − t1)

−
[

1
2
αj (t − t2)

2 +
1
6
βj (t − t2)

3

+
1
12

γj (t − t2)
4 +

1
20

δj (t − t2)
5

+ (j + 1)∂ (t − t2)
2

(
1
2
βj + γj

(
(j + 1)∂

2
+

t − t2
3

)

+ δj

(
((j + 1)∂)2

2
+

(j + 1)∂ (t − t2)
2

+
(t − t2)

2

4

) )]

× u (t − t2) (A4)

where

t1 = j∂ + t1a0 + t1b0

t2 = (j + 1)∂ + t1a0 + t1b0

emmtr(t) ∗
t
h1 ∗

t
h2 =

A1A2

M1∑
j=M0

[
1
3
αj (t − t1)

3 +
1
12

βj (t − t1)
4

+
1
30

γj (t − t1)
5 +

1
60

δj (t − t1)
6

+ j∂ (t − t1)
3

(
1
3
βj + γj

(
j∂

3
+

t − t1
6

)

+ δj

(
(j∂)2

3
+

j∂ (t − t1)
4

+
(t − t1)

2

10

))]
u (t − t1)

−
[

1
3
αj (t − t2)

3 +
1
12

βj (t − t2)
4

+
1
30

γj (t − t2)
5 +

1
60

δj (t − t2)
6

+ (j + 1)∂ (t − t2)
3

(
1
3
βj + γj

(
(j + 1)∂

3
+

t − t2
6

)

+ δj

(
((j + 1)∂)2

3
+

(j + 1)∂ (t − t2)
4

+
(t − t2)

2

10

) )]

× u (t − t2) (A5)

where

t1 = j∂ + t10 + t20

t2 = (j + 1)∂ + t10 + t20
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emmtr(t) ∗
t
h2a ∗

t
h2b

=

A2a0A2b0

M1∑
j=M0

[
1
4
αj (t − t1)

4 +
1
20

βj (t − t1)
5

+
1
60

γj (t − t1)
6 +

1
140

δj (t − t1)
7

+ j∂ (t − t1)
4

(
1
4
βj + γj

(
j∂

4
+

t − t1
10

)

+ δj

(
(j∂)2

4
+

3j∂ (t − t1)
40

+
(t − t1)

2

20

))]
u (t − t1)

−
[

1
4
αj (t − t2)

4 +
1
20

βj (t − t2)
5

+
1
60

γj (t − t2)
6 +

1
140

δj (t − t2)
7

+ (j + 1)∂ (t − t2)
4

(
1
4
βj + γj

(
(j + 1)∂

4
+

t − t2
10

)

+ δj

(
((j + 1)∂)2

4
+

3(j + 1)∂ (t − t2)
20

+
(t − t2)

2

20

) )]

× u (t − t2) (A6)

where

t1 = j∂ + t2a0 + t2b0

t2 = (j + 1)∂ + t2a0 + t2b0

The following equations are the analytical calculations
used to determine the times for the corners of the impulse
response. These times are computed as projections of the
corners of the element onto the line passing through the
center of the element and the field point. The resulting
times must be sorted as they do not take into account
which element corner is closest to the field point. The ele-
ment is assumed to be a rectangle lying in the XY plane
of a Cartesian coordinate system, with its center at the
origin. Here, nx is the x-coordinate of the distance from
element center to field point (ny and nz are such distance
for their respective coordinates); w0,x is the x-coordinate
for the element center, w1,x is the x-coordinate for the first
element corner, w2,x is the x-coordinate for the second el-
ement corner, etc.; and c0 is the speed of sound in the
medium.

t1 =

t0 +
nx (w1,x − w0,x) + ny (w1,y − w0,y) + nz (w1,z − w0,z)√

n2
x + n2

y + n2
z ∗ c0

t2 =

t0 +
nx (w2,x − w0,x) + ny (w2,y − w0,y) + nz (w2,z − w0,z)√

n2
x + n2

y + n2
z ∗ c0

t3 =

t0 +
nx (w3,x − w0,x) + ny (w3,y − w0,y) + nz (w3,z − w0,z)√

n2
x + n2

y + n2
z ∗ c0

t4 =

t0 +
nx (w4,x − w0,x) + ny (w4,y − w0,y) + nz (w4,z − w0,z)√

n2
x + n2

y + n2
z ∗ c0

(A7)

where

t0 =

√
n2

x + n2
y + n2

z

c0
.
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Cystic Resolution: A Performance Metric for
Ultrasound Imaging Systems

Karthik Ranganathan and William F. Walker

Abstract—This paper describes a metric that can be used
to characterize the resolution of arbitrary broadband co-
herent imaging systems. The metric is particularly suited
to medical ultrasound because it characterizes scanner per-
formance using the contrast obtained by imaging anechoic
cysts of various sizes that are embedded in a speckle-
generating background, accounting for the effect of elec-
tronic noise. We present the theoretical derivation of the
metric and provide simulation examples that demonstrate
its utility. We use the metric to compare a low-cost, hand-
held, C-scan system under development in our laboratory
to conventional ultrasound scanners. We also present the
results of simulations that were designed to evaluate and op-
timize various parameters in our system, including the f/#
and apodization windows. We investigate the impact of elec-
tronic noise on our system and quantify the tradeoffs asso-
ciated with quantization in the analog to digital converter.
Results indicate that an f/1 receive aperture combined with
10-bit precision and a signal-to-noise ratio (SNR) of 0 dB
per channel would result in adequate image quality.

I. Introduction

The evaluation of imaging performance is an essential
task in the development of ultrasound systems, both

to predict fundamental limits on quality and to optimize
parameters for system design. It is possible to estimate
the performance of existing systems by imaging phantoms
or human subjects, but, during system design, it is nec-
essary to be able to determine the imaging performance
of a proposed system prior to construction. The ability to
accurately predict performance enables system optimiza-
tion and quantitative consideration of engineering trade-
offs early in the design process and significantly reduces
the time and cost investment in system development. To
support these goals, this paper develops a general resolu-
tion metric for comparing arbitrary imaging systems.

The most common metric used to estimate scanner per-
formance is the beamplot, which has been adapted from
radar. System resolution is usually described using a com-
bination of the full width at half maximum (FWHM) or
−6 dB beamwidth of the beamplot and the beamwidth at
other levels [1]. Sidelobe and grating lobe levels are used to
estimate eventual image contrast. Although widely used,
there are disadvantages to using the beamplot to estimate
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the performance of ultrasound systems. Targets in med-
ical ultrasound are usually weakly reflecting tissues in a
scattering medium, unlike radar targets that are more of-
ten highly reflective and in a non-scattering background.
Therefore, there may be scenarios in which the FWHM cri-
terion indicates excellent performance, but actual images
of tissue do not reveal important details. Vilkomerson et
al. [2] demonstrated that the FWHM criterion sometimes
provides misleading information about resolution in ultra-
sound systems. It is, in addition, difficult to be certain
about the best levels at which to characterize and opti-
mize the beamplot. In other words, it is difficult to decide
whether to optimize the mainlobe width or sidelobe and
grating lobe levels for an overall increase in image qual-
ity. As mentioned above, performance may be determined
by imaging phantoms, such as in [3]. In [3], the authors
describe the use of a phantom containing spherical lesions
of varying sizes and contrasts to compare six automated
lesion-detection algorithms and human observer studies.
Imaging phantoms, however, does not provide a way to
theoretically assess the performance of different hypotheti-
cal imaging systems. Although repeated image simulations
can be performed to assess a wide variety of system param-
eters, including resolution, this approach is very computa-
tionally challenging. We need a metric that ties together
resolution and contrast in a way that is relevant to diag-
nostic ultrasound imaging.

Vilkomerson et al. [2] addressed the limitations of the
beamplot and proposed the concept of “cystic resolution,”
in which performance was quantified as the size of a void
that produced a given contrast. The analysis, although
novel and useful, was limited to narrowband circular aper-
tures and neglected the axial dimension. Üstüner and Hol-
ley [4] extended cystic resolution to a three-dimensional (3-
D) broadband model that addressed the above problems
but did not describe its theoretical foundation or publish
the model in an archival journal. The lack of a theoretical
background in [4] obscures important details, resulting in
a limited understanding of the formulation and its utility
and drawbacks. We derive a metric identical to that in
[4], extend it to include the effects of electronic noise, and
present simulation results that demonstrate its utility.

II. Theory

Our goal is to derive a metric to quantify the contrast
resolution of an arbitrary broadband ultrasound system.
Let the point spread function (psf) of the ultrasound sys-

0885–3010/$25.00 c© 2007 IEEE
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tem be defined as P (�x, t), a function of 3-D space (�x) and
time (t). Time in this expression is included for the propa-
gation of the sensitivity function through tissue, and thus
typically begins at transmission and ends at the comple-
tion of a single echo line. The medium scattering func-
tion is modeled as a stochastic process N(�x), undergoing
negligible tissue motion during reception of an individual
echo line and, therefore, being constant with time. We as-
sume that the effect of electronic noise during transmit
is negligible due to the high signal-to-noise ratio (SNR)
on transmit, and model the electronic noise on receive as
another stochastic process E(t). Combining these factors,
and assuming that the electronic noise is purely additive,
the received signal as a function of time is:

Sb(t) =

∞∫
−∞

P (�x, t)N(�x)d�x + E(t). (1)

Consider the mean squared received signal
〈
S2

b (t)
〉

where 〈〉 is the expected value operator:

〈
S2

b (t)
〉

=

〈⎡
⎣ ∞∫
−∞

P (�x1, t)N(�x1)d�x1 + E(t)

⎤
⎦

×

⎡
⎣ ∞∫
−∞

P (�x2, t)N(�x2)d�x2 + E(t)

⎤
⎦

〉
,

(2)

〈
S2

b (t)
〉

=

〈 ∞∫
−∞

∞∫
−∞

P (�x1, t)P (�x2, t)N(�x1)N(�x2)d�x1d�x2

〉

+

〈 ∞∫
−∞

∞∫
−∞

P (�x1, t)N(�x1)E(t)d�x1

〉

+

〈 ∞∫
−∞

∞∫
−∞

P (�x2, t)N(�x2)E(t)d�x2

〉
+

〈
E2(t)

〉
.

(3)

Rearranging the expected value operator to account for
the fact that the scattering function and electronic noise
are stochastic while the psf is deterministic yields:

〈
S2

b (t)
〉

=

∞∫
−∞

∞∫
−∞

P (�x1, t)P (�x2, t) 〈N(�x1)N(�x2)〉 d�x1d�x2

+

∞∫
−∞

∞∫
−∞

P (�x1, t) 〈N(�x1)E(t)〉 d�x1

+

∞∫
−∞

∞∫
−∞

P (�x2, t) 〈N(�x2)E(t)〉 d�x2 +
〈
E2(t)

〉
.

(4)

We assume that the electronic noise E(t) and the scat-
tering function N(�x) are uncorrelated and obtain:〈

S2
b (t)

〉
=

∞∫
−∞

∞∫
−∞

P (�x1, t)P (�x2, t) 〈N(�x1)N(�x2)〉 d�x1d�x2+
〈
E2(t)

〉
.
(5)

This expression can be simplified further by assuming
that the target scattering function is a stationary, white
noise process whose autocorrelation is a delta function.
Applying this assumption yields:〈

S2
b (t)

〉
=

∞∫
−∞

∞∫
−∞

P (�x1, t)P (�x2, t)aδ(�x1 − �x2, t)d�x1d�x2 +
〈
E2(t)

〉
,
(6)

where a is a scaling factor. Performing the outermost in-
tegral in the first term yields:

〈
S2

b (t)
〉

= a

∞∫
−∞

P 2(�x, t)d�x +
〈
E2(t)

〉
. (7)

The mean squared received signal is, therefore, a func-
tion of only the 3-D psf and the electronic noise. We can
now describe a mask that defines the location and size of
a spherical anechoic void (cyst):

M(�x) = 0, |�x| ≤ R,

= 1, |�x| > R,
(8)

where R is the radius of the cyst, and the cyst center is at
the origin of the coordinate system. M(�x) is also indepen-
dent of time because we assume no tissue motion during
the acquisition.

The scattering medium with the void is represented as
N(�x)M(�x). The received signal energy is expected to be at
a minimum when the beam axis coincides with the center
of the void, and as much of the psf energy as possible lies
in the region defined by the void. The received signal in
this circumstance then can be written as:

Sc(t) =

∞∫
−∞

P (�x, t)N(�x)M(�x)d�x + E(t). (9)

The mean squared received signal
〈
S2

c (t)
〉

is given in
(10) and (11) (see next page).

Since the psf and the mask are deterministic we can
rearrange the expected value operator and obtain (12) (see
next page).

Once again, assuming N(�x) is a stationary, white noise
process and uncorrelated to E(t), we get:

〈
S2

c (t)
〉

=

∞∫
−∞

∞∫
−∞

P (�x1, t)P (�x2, t)M(�x1)M(�x2)

× aδ(�x1 − �x2, t)d�x1d�x2 +
〈
E2(t)

〉
,

(13)

〈
S2

c (t)
〉

= a

∞∫
−∞

P 2(�x, t)M2(�x)d�x +
〈
E2(t)

〉
.

(14)

We define the contrast between the brightness at the
center of the cyst and the brightness of the background
region as:
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〈
S2

c (t)
〉

=

〈⎡
⎣ ∞∫
−∞

P (�x1, t)N(�x1)M(�x1)d�x1 + E(t)

⎤
⎦

⎡
⎣ ∞∫
−∞

P (�x2, t)N(�x2)M(�x2)d�x2 + E(t)

⎤
⎦

〉
, (10)

〈
S2

c (t)
〉

=

〈 ∞∫
−∞

∞∫
−∞

P (�x1, t)P (�x2, t)N(�x1)N(�x2)M(�x1)M(�x2)d�x1d�x2

〉

+

〈 ∞∫
−∞

∞∫
−∞

P (�x1, t)N(�x1)M(�x1)E(t)d�x1

〉

+

〈 ∞∫
−∞

∞∫
−∞

P (�x2, t)N(�x2)M(�x2)E(t)d�x2

〉
+

〈
E2(t)

〉
.

(11)

〈
S2

c (t)
〉

=

∞∫
−∞

∞∫
−∞

P (�x1, t)P (�x2, t)M(�x1)M(�x2) 〈N(�x1)N(�x2)〉 d�x1d�x2

+

∞∫
−∞

∞∫
−∞

P (�x1, t)M(�x1) 〈N(�x1)E(t)〉 d�x1

+

∞∫
−∞

∞∫
−∞

P (�x2, t)M(�x2) 〈N(�x2)E(t)〉 d�x2 +
〈
E2(t)

〉
.

(12)

C(t) =

√
〈S2

c (t)〉
〈S2

b (t)〉

=

√√√√√√√√
a

∞∫
−∞

P 2(�x, t)M2(�x)d�x + 〈E2(t)〉

a
∞∫

−∞
P 2(�x, t)d�x + 〈E2(t)〉

.
(15)

We define the electronic SNR as a function of time:

SNR(t) =
σsignal(t)
σnoise(t)

, (16)

where σsignal(t) and σnoise(t) are the standard deviations
of the signal and noise components, respectively. Note that
we define the standard deviations over an ensemble of sig-
nal and noise realizations and not in time. σsignal(t) can
be expressed as:

σsignal(t)

=

√√√√√
〈 ∞∫

−∞

P (�x1, t)N(�x1)d�x1

∞∫
−∞

P (�x2, t)N(�x2)d�x2

〉
,

(17)

σsignal(t) =

√√√√√a

∞∫
−∞

P 2(�x, t)d�x. (18)

σnoise(t) can be expressed as:

σnoise(t) =
√

〈E2(t)〉. (19)

Applying (18) and (19) to (16) yields:

SNR(t) =
σsignal(t)
σnoise(t)

=

√√√√√a
∞∫

−∞
P 2(�x, t)d�x

〈E2(t)〉 ,
(20)

or equivalently:

〈
E2(t)

〉
=

a
∞∫

−∞
P 2(�x, t)d�x

SNR2(t)
. (21)

Applying (21), (15) now can be modified to yield:

C(t) =

√√√√√√√√√√√√
a

∞∫
−∞

P 2(�x, t)M2(�x)d�x +
a

∞∫
−∞

P 2(�x,t)d�x

SNR2(t)

a
∞∫

−∞
P 2(�x, t)d�x +

a

∞∫
−∞

P 2(�x,t)d�x

SNR2(t)

.
(22)
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We can simplify the expression in (22) as follows:

C(t) =

√√√√√√√√
SNR2(t)

∞∫
−∞

P 2(�x, t)M2(�x)d�x +
∞∫

−∞
P 2(�x, t)d�x

SNR2(t)
∞∫

−∞
P 2(�x, t)d�x +

∞∫
−∞

P 2(�x, t)d�x

(23)

=

√√√√√√√√√
1 + SNR2(t)

∞∫
−∞

P 2(�x,t)M2(�x)d�x

∞∫
−∞

P 2(�x,t)dx

1 + SNR2(t)
(24)

=

√√√√1 + SNR2(t)Eout(t)
Etot(t)

1 + SNR2(t)
, (25)

where Eout(t) is the psf energy outside the void as a func-
tion of time:

Eout(t) =

∞∫
−∞

P 2(�x, t)M2(�x)d�x, (26)

and Eout(t) is the total psf energy as a function of time:

Etot(t) =

∞∫
−∞

P 2(�x, t)d�x. (27)

Eq. (24) and (25) describe the contrast relative to back-
ground speckle obtained by an imaging system with the psf
P (�x, t) and electronic SNR defined statistically by SNR(t)
when imaging an anechoic cyst whose size and location are
described by the mask M(�x). Eq. (25) can alternatively be
expressed as a function of the psf energy within the cyst
Ein(t), given by:

Ein(t) = Etot(t) − Eout(t). (28)

Modifying (25):

C(t) =

√√√√1 + SNR2(t)
(
1 − Etot(t)−Eout(t)

Etot(t)

)
1 + SNR2(t)

.
(29)

Substituting (28) in (29) yields:

C(t) =

√√√√1 + SNR2(t)
(
1 − Ein(t)

Etot(t)

)
1 + SNR2(t)

. (30)

Note that if the cyst is large enough so that the en-
tire psf energy is contained within it, the contrast depends
solely on the electronic noise. Although (24), (25), and
(30) can individually completely characterize system per-
formance for a given cyst, analysis at the instant in time
when the received signal is minimum (i.e., when as much

of the psf energy as possible lies within the cyst) is usually
sufficient. At this single instant in time to, we can express
the psf as a function of only 3-D space at the time of in-
terest Pto(�x), and the SNR at the time of interest SNRto .
Modifying (24), the contrast at time to is:

Cto =

√√√√√√√√√
1 + SNR2

to

∞∫
−∞

P 2
to

(�x)M2(�x)d�x

∞∫
−∞

P 2
to

(�x)d�x

1 + SNR2
to

(31)

=

√√√√1 + SNR2
to

Eout
to

Etot
to

1 + SNR2
to

, (32)

where Eout
to

is the psf energy outside the cyst and Etot
to

is
the total psf energy, both at time to. Eq. (32) also can be
modified to express the contrast as a function of the psf
energy within the cyst at time to, Ein

to
:

Cto =

√√√√1 + SNR2
to

(
1 − Ein

to

Etot
to

)
1 + SNR2

to

. (33)

If we neglect electronic noise, SNRto becomes infinite
and (31) can be modified to the equation for contrast pre-
sented in [4]:

Cto =

√√√√√√√√
∞∫

−∞
P 2

to
(�x)M2(�x)d�x

∞∫
−∞

P 2
to

(�x)d�x

=

√
Eout

to

Etot
to

=

√
1 −

Ein
to

Etot
to

.

(34)

We can compute the contrast for cysts of different sizes
using one of the above expressions for cystic contrast, and
characterize system performance as a function of cyst size
as in [2] and [4]. This metric can be used for 4-D spatiotem-
poral analysis of arbitrary broadband ultrasound systems.
But 3-D spatial analysis using (31) or (34) is adequate
to characterize scanner performance as temporal analysis
does not provide critical information. Note that, in certain
cases, it is valuable to compute the metric at different cyst
locations to quantify depth of field, the effect of dynamic
focusing, and other factors pertaining to the shift variance
of the imaging system. Note also that, although (24), (31),
and (34) can be used to determine the cystic resolution of
a system, we also can optimize system parameters by com-
puting contrast as a function of cyst size and determining
parameter values that maximize the contrast at the cyst
sizes of interest.

III. Methods

The derived metric is useful in guiding the design and
optimization of ultrasound systems. We highlight these
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TABLE I
List of Default Parameters Used to Simulate Our

C-Scan System.

2-D array layout 32 × 32

Pitch 635 µm (1.4λ)

Receive focus 1 cm

Receive f/# 1

Receive apodization Nuttall window

Transmit pulse center 3.3 MHz
frequency

Transmit pulse length 3 cycles weighted by a
Nuttall window

Spatial window over Cylindrical volume with radius
which psf was computed 2.4 cm and height 1 cm

Spatial sampling 60 µm radially, 1 degree in
angle, and 60 µm in range

applications through a series of examples drawn from
our ongoing efforts to develop a low-cost, handheld, C-
scan ultrasound system for use in routine procedures such
as image guided needle/IV line insertion and emergency
room/battlefield triage. Our system uses a fully sampled
2-D array [5] interfaced to a custom integrated circuit
with transmit protection, analog conditioning, and sam-
pling and digitizing circuitry [6]. Beamforming is imple-
mented by complex phase rotation of in-phase/quadrature
(I/Q) data that are generated by directly sampling the
received RF signal [7]. Our beamforming strategy, direct
sampled I/Q (DSIQ) beamforming, results in poorer image
quality than might be obtained using time delays; however,
the use of a fully sampled 2-D array enables dynamic fo-
cusing in elevation, which may outweigh the performance
loss incurred by using DSIQ beamforming. In order to in-
vestigate such tradeoffs, we compared our current first-
generation prototype system to a conventional system with
a 1-D array that focused in azimuth using time delays and
in elevation with a lens. The conventional system had a
128-element 1-D array with a pitch of 135 µm, which cor-
responds to 0.3λ, where λ is the wavelength and is 466 µm.
Default parameters for our prototype system are listed in
Table I. Note that the default parameters were used in all
simulations unless other parameter values are specifically
mentioned. Our system does not have the ability to focus
or apodize on transmit, so we focused and apodized only
on receive in both sets of simulations (we used all elements
to transmit an unfocused plane wave). Receive apodization
was implemented with 1-D and 2-D Nuttall windows [8].

We simulated our system using DELFI, a custom ul-
trasound simulation package developed in our laboratory.
DELFI is a simulation tool for computing the two-way far-
field response from rectangular transducer elements un-
der arbitrary excitation. It uses an analytical approach to
approximate the spatial impulse response of the system
under consideration as the sum of polynomial functions.
DELFI is currently implemented as a C routine under
MATLAB (The MathWorks Inc., Natick, MA) and ob-

tained responses, as will be described in detail in a future
publication, are in excellent agreement with theory and
with results obtained using Field II [9]. DELFI is unique
and powerful not only because of its analytical approach,
but also its efficiency; it is much more efficient than Field
II when computing spatial sensitivity functions at a single
instant in time. In these cases, DELFI is approximately 25
times faster than Field II with no loss in quality.

Spatial pulse-echo responses were computed by trans-
mitting a plane wave on all elements and receiving sequen-
tially on each element. The psfs were computed in the 3-
D cylindrical volume described in Table I at two times—
the time taken to propagate to the focus and back to the
transducer, and a quarter period (at the center frequency)
later [7]. We then combined the two psfs computed for
each receive element to form a single, complex psf [7]. We
implemented apodization and focusing by complex phase
rotation, and we summed across elements to obtain the
complete summed and focused response. Note that the de-
sired receive f/# was implemented by including only the
responses of those elements that form an aperture of the
desired diameter. In other words, the f/# is calculated by
including only the elements that are apodized with nonzero
weights.

We used Field II to simulate the conventional system
by computing the spatiotemporal response at each point in
the 3-D spatial window of analysis. We applied the Hilbert
transform [10] to form a complex analytic signal whose real
part was the original received response and whose imagi-
nary part was the Hilbert transform of that response. The
3-D spatial psf was constructed by summing the samples
at the two-way propagation time determined by array ge-
ometry and the location of the focus. Because the conven-
tional system uses a lens in elevation and significant por-
tions of targets often are imaged away from the elevation
focus, we computed two psfs to compare to our system—
one with the elevation focus coincident with the azimuthal
focus at 1 cm (21.4λ), and one with the elevation focus
set to 2.8 cm (60λ). We chose to set the elevation focus
at 2.8 cm because we mimicked a commercially available
transducer that we use for experiments in the laboratory.
Fig. 1 shows slices of the two psfs obtained with the 1-
D array and focusing via time delays. Fig. 2 shows slices
of the psf obtained with the 2-D array and DSIQ beam-
forming. We used (34) to compute the contrast for cysts
of different sizes. We ignored the effects of electronic noise
because noise estimates for our first generation prototype
will be of limited relevance in our final system. Fig. 3 de-
picts the contrast as a function of cyst size for the three
geometries examined.

The above application of the metric allows a direct com-
parison of our C-scan system to more conventional linear
array based systems, a comparison that would be difficult
using only the beamplot or even the psf. We also have ap-
plied the metric to quantify the often subtle differences in
performance that result from changes in our system con-
figuration. In each of the following examples, application
of the metric provides clear guidance in system design.
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Fig. 1. Slices of the simulated 3-D spatial psf obtained for a conventional system with a 1-D array and time delay focusing. (a), (c), and (e)
depict slices in azimuth-elevation, elevation-range, and azimuth-range, respectively, for the system with a coincident focus. (b), (d), and (f)
depict slices in azimuth-elevation, elevation-range, and azimuth-range respectively, for the system with the elevation focus set to 2.8 cm.
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Fig. 2. Slices of the simulated 3-D spatial psf obtained simulating the first generation prototype of our low-cost, C-scan system with a 2-D
array and DSIQ beamforming. Relevant parameters are listed in Table I. (a) and (b) depict slices in azimuth-elevation and azimuth-range,
respectively. Due to symmetry, the elevation-range slice is identical to the azimuth-elevation slice and is therefore not shown.

Fig. 3. Comparison of our prototype C-scan system with a conven-
tional system. Cystic contrast was computed using (34) and is plotted
as a function of cyst size.

Although lower electronic noise is always preferable,
practical systems almost always exhibit other limitations,
such as limited dynamic range, which render noise reduc-
tion beyond some threshold SNR of limited use. To deter-
mine this threshold in our system, we varied the electronic
SNR per channel, as listed in Table II, computed the psf
using DELFI as described above, and used (31) to compute
the contrast as a function of cyst size for our prototype sys-
tem. Figs. 4(a) and (b) depict the obtained contrast as a
function of cyst size when receive apodization was imple-
mented with flat and Nuttall windows, respectively.

It is well-known that digitizer quantization affects side-
lobe levels [11]. State-of-the-art clinical scanners typically
use 10 bits to represent each sample. However, compro-
mises made in fabricating our 2-D array transducer and in
beamforming might render 10 bits superfluous in our pro-
totype system. We tested this hypothesis by investigating

TABLE II
Single Receive Channel SNR Values Used With (31) to

Estimate the Impact of Electronic Noise.

Electronic SNR per
channel (dB)

−10
0

10
20

TABLE III
Number of Bits Used to Represent Each Real Value to

Determine the Minimum Precision Required in our System.

Quantization
(# bits)

6
8

10
12
16

the impact of quantization on cyst contrast in an ideal
scanner with no electronic noise. We quantized the single
receive element responses, obtained as described above,
using different precisions (Table III) and then apodized,
focused, and summed the responses. Note that the pre-
cisions listed in Table III correspond to one real sample,
and a full complex sample was therefore represented using
twice the listed number of bits. The effect of quantization
on cyst contrast is illustrated in Fig. 5.

The choice of receive f/# is an important design pa-
rameter in our system because we focus solely by phase
rotation of the received data. Although larger apertures
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Fig. 4. Effect of electronic noise. Contrasts were computed using (31) for the SNRs listed in Table II and are shown as a function of cyst
size when receive apodization was implemented using (a) a flat window and (b) a Nuttall window.

Fig. 5. Effect of quantization. Single receive element responses were
quantized using different precisions (Table III) for each real sample,
then apodized, focused, and summed to yield 3-D responses. Con-
trasts were computed using (34) and are plotted as a function of cyst
size.

improve resolution when conventional time-delay focusing
is used, larger apertures might degrade image quality in
our system because of the limitations of DSIQ beamform-
ing [7]. In addition, our elements are highly directive be-
cause of our large pitch (635 µm or 1.4λ); therefore, large
apertures might yield higher grating lobes. We explored
the impact of f/# by computing the contrast as a function
of cyst size for the f/#s listed in Table IV. Fig. 6 plots
contrast as a function of cyst size for each f/# tested.

We also explored the effect of varying the apodization
window on our system. We used the six windows listed in
Table V. Fig. 7(a) depicts contrast as a function of cyst
size for each window in a noise-free environment. Fig. 7(b)
plots the obtained contrast in the presence of electronic
noise with an SNR of −10 dB per channel. It is worth not-
ing that the selection of apodization windows based solely

TABLE IV
F/#s Used on Receive to Determine the Optimal f/# for

our System.

f/#

0.50
0.75
1
1.25
1.5
1.75

TABLE V
Windows Used to Determine the Impact of Receive

Apodization on Cyst Contrast.

Apodization

Flat
Hann [12]
Tukey [13]

Gaussian [13]
Chebyshev (relative sidelobe
attenuation of 100 dB) [14]

Nuttall [8]

on the presented metric might not result in the best image
quality. A particular window might reduce grating lobes
and sidelobes, but if it also reduces array gain, losses in
sensitivity (reduction in SNR) might outweigh the contrast
benefits. Table VI lists the contrasts (when imaging a cyst
of radius 2.5 mm or 5.4λ) and the associated sensitivities
obtained using each window. Contrasts with no electronic
channel noise, and noise with an SNR of −10 dB and 0 dB
per channel, are listed. The sensitivities were calculated
from the peak magnitude of the psfs and are normalized
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Fig. 6. Effect of f/#. Contrasts were computed using (34) and are
plotted as a function of cyst size for the f/#s listed in Table IV.

to the sensitivity obtained using flat apodization. We use
a cyst of radius 2.5 mm because one of the major appli-
cations envisioned for our C-scan system is image guided
needle/IV line insertion in the arm, where the veins are
approximately 5 mm in diameter.

IV. Results and Discussion

Fig. 1 depicts slices of the psf obtained in our control
simulation of conventional ultrasound systems, with the el-
evation focus at the azimuthal focus (1 cm) and at 2.8 cm.
We see a similar response for the two geometries in the
azimuth-range plane in Fig. 1(e) and (f), but, as expected,
the elevation focus plays a role in the azimuth-elevation
and elevation-range planes in Fig. 1(a)–(d). We see a sig-
nificant broadening of the psf in these planes when the
elevation focus is moved away from the azimuthal focus.

Fig. 2 shows slices of the psf obtained for our C-scan sys-
tem. The slice in the azimuth-elevation plane in Fig. 2(a)
shows a broader mainlobe in azimuth than the 1-D array
in Fig. 1, due to our use of only phase delays for focus-
ing. The response is also broader in elevation when com-
pared to the 1-D array with a coincident focus in azimuth
and elevation. The benefit of a variable elevation focus be-
comes apparent when we compare results from our system
to those from the 1-D array geometry with the elevation
focus at 2.8 cm; the beam is broader in elevation in the 1-D
case, as can be seen in Fig. 1(b) and (d). However, a slice
of the psf obtained with the 2-D array in the azimuth-
range plane reveals not only a broad mainlobe but also
significant grating lobes.

Fig. 3 depicts a comparison of the three geometries de-
scribed above. It can be seen that the contrast obtained
with the 2-D array is much worse than with the 1-D array
with coincident azimuthal and elevational foci. Recall that
the metric computes the ratio of the psf energy outside the
cyst to the total psf energy. Therefore, when considering
the contrast curve for our system, the rightmost portion
of the contrast curve (for cysts with radii greater than

4 mm or 8.6λ) is affected only by the grating lobes. How-
ever, as the size of the cyst decreases, the effects of the
sidelobes (cyst radii from 1.5 to 4 mm or from 3.2λ to
8.6λ), and eventually the mainlobe (cyst radii less than
2 mm or 4.3λ), come into consideration. The effects of a
larger mainlobe and grating lobes combine to limit con-
trast in our prototype system across cysts of all sizes.
However, when we compare our system to the 1-D case
with different azimuthal and elevational foci locations, we
see that the mainlobe broadening in elevation in the 1-D
case greatly reduces contrast for that geometry. Since one
of the primary applications of our system is image-guided
needle/IV line insertion, we are particularly interested in
cysts of radii between 1.5 to 2.5 mm. In this range, we see
that our system would generate cystic contrast that is at
least comparable to the conventional system; this is an im-
pressive conclusion considering the reductions in hardware
complexity and cost of our approach.

Note that the flat region of the contrast curve
(radii > 4 mm) for our system depends on the level of the
grating lobes and is therefore mostly dependent on the ar-
ray pitch. The array pitch in our current prototype is large
due to printed circuit board fabrication limitations [5] and
will be reduced significantly in the next prototype. This
should, in turn, yield an overall improvement in contrast.

Fig. 4 illustrates the effect of electronic noise on receive.
It can be seen, as expected, that the contrast increases
with increasing SNR. The plots suggest that improving the
electronic SNR much beyond 0 dB per channel will yield
no noticeable improvement in image quality. Although an
SNR greater than 0 dB results in better contrast for large
cysts, our focus on imaging cysts of radii less than 2.5 mm
makes this result of limited relevance. As we improve our
element pitch and thus reduce grating lobes, the flat region
of the curves will change, and we will most certainly need
to reconsider the effect of SNR.

The effect of quantization can be seen in Fig. 5. Quan-
tization noise significantly degrades the obtained contrast
when less than 10 bits are used per real sample. Although
these simulations did not include the effect of electronic
noise, an electronic SNR as low as 0 dB per channel still
should render these results valid.

Fig. 6 shows the effect of varying the f/#. We see that
contrast increases with increasing f/# for large cysts. This
is due to the 2-D array pitch, which results in highly di-
rective elements and thus large grating lobes when large
apertures are used. Large f/#s (> f/1.5), however, result in
a very broad mainlobe and reduce contrast when imaging
small cysts. Fig. 6 suggests that an f/1 system would be a
good compromise for imaging cysts of all sizes. Although
this analysis ignores the effect of aperture size on system
sensitivity, sensitivity would increase with increasing aper-
ture size. For poor SNR environments, it may be necessary
to consider the impact of SNR and f/# simultaneously.

Fig. 7 shows the contrasts obtained using different
apodization windows in the presence and absence of elec-
tronic noise. Contrasts obtained using each tested apodiza-
tion window for a cyst of radius 2.5 mm are listed in Ta-
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Fig. 7. Effect of apodization with (a) no electronic noise, and (b) electronic noise with SNR −10 dB per channel. Contrasts were computed
using (34) in the noise-free case and (31) when noise was considered, and are plotted as a function of cyst size. Psfs obtained with each of
the apodization windows listed in Table V were used to compute the shown contrast curves.

TABLE VI
Contrasts Obtained for a Cyst of Radius of 2.5 mm with Varying Amounts of Electronic Noise

1
.

Contrast (dB) Contrast (dB) Contrast (dB)
Sensitivity with −10 dB with 0 dB with no

Window (dB) electronic SNR electronic SNR electronic noise

Rect 0 −4 −4 −4
Hann −7 −8 −9 −9
Tukey −2 −6 −6 −6

Gaussian −7 −7 −8 −8
Chebyshev −9 −8 −10 −10

Nuttall −11 −9 −10 −11

1Different apodization windows were used and their associated sensitivities were normalized to the sensitivity
using flat apodization. Contrasts obtained with no electronic noise, noise with an SNR of −10 dB per channel,
and an SNR of 0 dB per channel are listed. Contrasts were computed using (34) in the noise-free case and
(31) when noise was considered.

ble VI for various SNR values, along with the effect of
the windows on system sensitivity. There is generally an
inverse relationship between contrast and sensitivity. The
Nuttall window maximizes contrast for all simulated noise
levels, but it is also the window most affected by electronic
noise. The contrast trends seen in Table VI when the noise
level is varied indicate that the Hann or Tukey windows are
least affected by noise because of comparatively high sen-
sitivity. Note, however, that the Gaussian window would
be a poor choice because it yields a poorer contrast for the
same sensitivity as the Hann window.

As demonstrated by the above examples, the use of cys-
tic resolution makes parameter optimization easier because
a simple plot of contrast as a function of cyst size can be
generated for any system. The goal of system design is
then to simply maximize the contrast at the cyst size of
interest, leaving no room for ambiguity. The comparison of
disparate imaging systems also is straightforward because
we can easily determine the system that has the better
cystic resolution for a specified level of contrast. This is in

stark contrast to the use of the beamplot, in which opti-
mization is not necessarily clear. The proposed metric is
also very flexible because the mask M(�x) can be changed
to match the target of interest. We also could introduce
scatterers in the region defined by the mask, as described
in [2], to predict performance when imaging hypoechoic or
hyperechoic lesions. Note, however, that the expressions
derived in this paper for the psf energy outside and within
the cyst are valid only if the mask represents an anechoic
region. The major drawback of the proposed metric is that
it neglects the effect of speckle statistics and size on target
detectability [15]. Despite this drawback, the above metric
is much better suited to characterize medical ultrasound
systems than current approaches.

V. Conclusions

Existing methods to characterize ultrasound systems
are limited in their utility. The beamplot is usually of lim-
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ited use unless the goal is to image a bright point target.
It is, in addition, difficult to decide how to optimize the
beamplot to improve overall imaging performance. Con-
trast detail phantoms cannot be used to assess hypothet-
ical systems without excessive computational costs. We
built upon [2] and [4] to derive a metric to characterize ar-
bitrary 3-D broadband ultrasound systems, including the
effects of electronic noise. We presented simulation results
that demonstrated the use of the metric in designing ultra-
sound systems, and we showed that it enables the straight-
forward optimization of any parameter that affects image
quality.
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Optimal Apodization Design for Medical
Ultrasound Using Constrained Least Squares

Part I: Theory
Drake A. Guenther and William F. Walker, Member, IEEE

Abstract—Aperture weighting functions are critical de-
sign parameters in the development of ultrasound systems
because beam characteristics affect the contrast and point
resolution of the final output image. In previous work by
our group, we developed a metric that quantifies a broad-
band imaging system’s contrast resolution performance. We
now use this metric to formulate a novel general ultra-
sound beamformer design method. In our algorithm, we
use constrained least squares (CLS) techniques and a lin-
ear algebra formulation to describe the system point spread
function (PSF) as a function of the aperture weightings. In
one approach, we minimize the energy of the PSF outside
a certain boundary and impose a linear constraint on the
aperture weights. In a second approach, we minimize the
energy of the PSF outside a certain boundary while impos-
ing a quadratic constraint on the energy of the PSF inside
the boundary. We present detailed analysis for an arbitrary
ultrasound imaging system and discuss several possible ap-
plications of the CLS techniques, such as designing aperture
weightings to maximize contrast resolution and improve the
system depth of field.

I. Introduction

The determination of array aperture weights that pro-
duce a synthesized beam pattern with a narrow main-

lobe and low sidelobes is a classical problem with a rich
history in the signal processing literature. Dolph [1] used
Chebyshev polynomials to calculate aperture weights for
a uniformly spaced, continuous wave linear array that
achieved the minimum possible beamwidth for a given
maximum sidelobe level. Taylor [2] expanded this formu-
lation to achieve tapered sidelobes further away from the
mainlobe for continuous apertures, and Villeneuve [3] ap-
plied it to discrete arrays. Nuttall [4] improved upon the
Blackman-Harris window to achieve beam patterns whose
maximum sidelobes are minimized. Whereas these previ-
ous papers focused on uniformly spaced arrays, Olen and
Compton [5] developed an iterative procedure using an
arbitrarily shaped adaptive array to produce the desired
sidelobe behavior by using a recursive feedback procedure.
Tseng and Griffiths [6] also produced a simple iterative al-
gorithm that can be used to find array weights for nonuni-
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form geometries to produce beam patterns with a given-
look direction and minimum energy in the sidelobes. An
interesting outcome of their methods allowed for the design
of beam patterns in which the desired sidelobe response
could vary with angle.

Although these previous methods produced excellent re-
sults, narrowband assumptions, computational complexi-
ties, and iterative procedures limit their applicability to
general ultrasound beamformer design. Considerable gains
can be made in computation time with the use of least
squares methods. In fact, over the last two decades, many
authors have developed constrained least squares algo-
rithms for the design of finite impulse response (FIR) fil-
ters [7]–[10]. These methods typically minimize the error
of the filter over a certain frequency band with respect to
some desired filter response. For example, Selesnick et al.
[7] described a constrained least squares approach to de-
sign FIR filters that did not require the specification of a
transition band of frequencies between the passband and
stopband. By setting up a minimization problem on the
l2 error of the filter’s amplitude response subject to linear
equality constraints, Selesnick et al. [7] derived filters with
minimum error and devoid of Gibb’s phenomenon. Other
authors used least squares methods to produce eigenfil-
ters, or filters that minimize a quadratic error measure in
the passband and stopband [8]–[10]. Later in a series of
papers, Er et al. [11]–[16] used a variety of constrained
least squares techniques to synthesize arbitrary array pat-
terns subject to different criteria such as sidelobe level and
mean squared sidelobe energy. Their algorithms use linear
and quadratic constraints to achieve array patterns, which
are highly directional with very low sidelobes, for general
array geometries.

The rich history of array pattern synthesis optimiza-
tion only recently was applied to medical ultrasound imag-
ing, and most applications have been specialized [17]–[21].
For example, Ebbini and Cain [17] proposed a method
for synthesizing multiple focal regions on single transmit
events for applications in hyperthermia treatment via ul-
trasound. Li et al. [18] used a total least squares method
to compensate for point spread function (PSF) degrada-
tion due to “dead” array elements or elements blocked by
acoustically opaque windows in the interrogated media.
Recently, Wilkening et al. [20], [21] designed optimal FIR
filters for improved image contrast in contrast agent imag-
ing and FIR filters that increased the depth of field for
dynamic receive focusing. Although insightful and useful,

0885–3010/$25.00 c© 2007 IEEE
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these methods failed to address the larger problem of gen-
eral beam pattern synthesis given arbitrary arrays. Previ-
ously, our group developed a general aperture design tool,
supported by rigorous theory that is applied to the design
of aperture weighting functions for arbitrary system design
[22], [23]. The method used a minimum sum squared er-
ror (MSSE) formulation between the system PSF and the
desired or goal PSF. One strength of the approach is that
it allowed for full beam optimization given system param-
eters obtained through theory, simulation, or experiment.
The method is useful because it allows for the design of any
controllable system parameter in a straightforward, rigor-
ous, time-efficient manner. Ranganathan and Walker’s [22]
approach, although extremely useful in aiding the design of
prototype systems, suffers from the lack of a quantitative
measure detailing how system performance changes with
respect to a deviation in system parameters. Furthermore,
the approach offers no guidance in the selection of an ap-
propriate goal point spread function. These shortcomings
make system optimization using the MSSE approach dif-
ficult.

The method of apodization profile design presented in
this paper is general enough to be applied to any coher-
ent imaging system and is similar to many of the previ-
ous array pattern synthesis techniques using constrained
least squares (CLS). For example, our linearly constrained
least squares (LCLS) formulation is similar to the array
pattern synthesis technique by Tseng and Griffiths [6],
and our quadratically constrained least squares (QCLS)
formulation is similar to the constrained eigenfilter de-
sign [8], [24]. These prior analyses were for a single car-
rier frequency, whereas we use a broadband formulation.
Keitmann-Curdes et al. [25] previously developed an al-
gorithm similar to our QCLS formulation that generated
apodization profiles for ultrasound imaging with minimum
sidelobe energy of the two-dimensional, space-time PSF.
Recently Schwann et al. [26] used two different resolution
criteria to design optimal frequency-dependent apodiza-
tion profiles, a method whose goals are similar to ours of
improving image contrast. However, their multiple objec-
tive formulation requires computationally expensive itera-
tive methods to arrive at one Pareto optimum solution, or
a solution in which further improving one objective nec-
essarily degrades all others [27]. Further review of the dif-
ferences between our LCLS and QCLS methods and the
techniques mentioned above will be discussed in more de-
tail later in this paper.

Because the ultrasound system’s beam characteristics
fundamentally affect the quality of the image, a great deal
of effort is put into optimizing system parameters. Esti-
mating the imaging performance of ultrasound systems
is critical, both to characterize the fundamental imaging
limits of the system, and to optimize image quality. It is
possible to estimate the performance of existing systems
by imaging phantoms or human subjects, but it is neces-
sary during system design to be able to determine imaging
performance prior to system construction. The ability to
accurately predict performance enables system optimiza-

tion, quantitative consideration of engineering tradeoffs,
and significantly reduces the time and cost investment in
system development.

Synthesis of beampatterns in diagnostic ultrasound re-
ceives a great deal of attention during system design. The
system’s spatial impulse response, or point spread func-
tion, characteristics will determine such parameters as
point resolution and contrast in the resulting image. Thus,
control over mainlobe width and sidelobe level is signifi-
cant. These beam parameters are influenced by the size of
the active aperture, the frequency of the ultrasound pulse,
the magnitude and phase (or time delay) of the weightings
applied to the active elements, and the pulse length. Be-
cause so many factors affect the characteristics of the PSF
and there is no global parameter describing PSF quality,
beamforming parameters usually are determined through
iterative simulation and experimentation.

A quantitative resolution metric is essential to guide
optimization of system parameters, including the system’s
PSF. The most common measure of scanner performance is
the beamplot [28], which has been adapted from RADAR.
The −6 dB beamwidth of the beamplot, the full width at
half maximum (FWHM), and the beamwidth at other lev-
els are used to estimate scanner resolution. Sidelobe and
grating lobe levels are used to estimate eventual image con-
trast. Although widely used in medical ultrasound, there
are scenarios in which the FWHM criterion indicates ex-
cellent performance, but actual images of tissue do not
reveal important details.

Vilkomerson et al. [29] addressed the limitations of the
beamplot and proposed the concept of cystic resolution
in which performance was quantified as the size of a void
that produced a given contrast. The analysis, while novel
and useful, was limited to narrowband circular apertures
and neglected the axial dimension. Johnson [30] further de-
veloped the contrast resolution metric to include a three-
dimensional (3-D) broadband model for circular apertures
and compared different imaging parameters using maxi-
mum output contrast curves versus cyst diameter. Üstüner
and Holley [31] extended cystic resolution to a 3-D broad-
band model for arbitrary apertures, but they did not de-
scribe its theoretical foundation, resulting in a limited un-
derstanding of the formulation and its utility and draw-
backs. A general cystic resolution metric was previously
derived by our group [32]. This metric accounts for the
effect of electronic noise and, under certain assumptions,
reduces to that described in [31]. Whereas, the FWHM
criterion sometimes provides misleading information about
resolution in ultrasound systems, the cystic resolution met-
ric identifies specific points in the system’s PSF that can
be optimized to increase image quality and performance.

This paper uses the cystic resolution metric to guide
optimization of apodization profiles for coherent imaging
systems. Specifically, we design optimal receive apodiza-
tion profiles for a 1-D linear array; however, our theory
can be applied to a 2-D array of arbitrary geometry and
can be used to design one-way or two-way apodization
profiles. We propose two different methods for optimal
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apodization design. The first algorithm minimizes the en-
ergy of the PSF outside some specified region subject to
a linear constraint of the apodization weights. We call the
resultant weights the LCLS apodization profile. The sec-
ond algorithm minimizes the energy of the PSF outside
some region subject to a quadratic energy constraint of
the PSF inside the boundary. We call the resultant weights
the QCLS apodization profile.

Our CLS apodization design methods return real
weights and achieve a spatial impulse response with mini-
mum sidelobe levels in a least squares sense given a spec-
ified mainlobe area. We formulate the problem starting
from basic principles of acoustic wave diffraction theory
and apply linear algebra techniques to represent the sys-
tem PSF. We generate a least squares problem subject to
either a linear or quadratic constraint in order to mini-
mize the energy outside a given mainlobe area in the PSF.
The algorithm can be applied to enhance the depth of
field (DOF) in an imaging system as well as improve le-
sion detectability in inhomogeneous scattering media. The
algorithm is arguably optimal for detecting anechoic cysts
via ultrasound; however, we believe it also will improve ul-
trasound system performance in general imaging applica-
tions. This paper outlines the theoretical description of the
constrained least squares technique for designing apodiza-
tion profiles for broadband, coherent imaging systems, de-
scribes a technique for reduced computational cost, and
finally discusses examples of application. Results from sim-
ulations are presented in an accompanying paper [33].

II. Theory

We present two-way broadband formulations for the
LCLS and QCLS apodization design techniques. The one-
way broadband formulation can be expressed in a similar
manner; but we note that, in most ultrasonic imaging ap-
plications, the two-way impulse response is of greater inter-
est. The two-way broadband formulation of the PSF incor-
porates the system’s transmit conditions: excitation pulse,
transmit apodization, element-impulse response, etc. How-
ever, the CLS algorithms, as formulated here, operating
on a two-way PSF will calculate only the optimal receive
apodization. In practice one could optimize the transmit
apodization given the one-way PSF, then include it in the
formulation of the two-way PSF optimization.

A. Linear Algebra Formulation of the Broadband Spatial
Impulse Response

The acoustic pressure field emanating from a transducer
during pulse-echo propagation at a single instant in time
can be expressed as the product of a propagation matrix,
S, and a set of aperture weightings, w. The propagation
matrix uses superposition to describe the contribution of
each transducer element at each field point at an instant in
time. The propagation function may be derived from the
Rayleigh-Sommerfeld diffraction equation derived in [34]

and also may include a term relating to limited-element,
angular response [35]. Alternatively, the propagation ma-
trix may be computed via broadband simulation or esti-
mated experimentally. For our formulation, S is a function
of the transmit aperture weights, the excitation pulse, and
the individual element impulse responses of the transmit
and receive apertures [22].

The two-way pulse-echo propagation matrix, S, for a
fixed transmit aperture and a n element receive aperture
at a total number of p points in 3-D space is:

S =

⎡
⎢⎢⎢⎣

s1,1 s1,2 · · · s1,n

s2,1 · · · · ·
...

...
. . .

...
sp,1 · · · · sp,n

⎤
⎥⎥⎥⎦ , (1)

where si,j is the contribution of the jth element at the ith
point in space. The receive aperture weighting function, w,
for each of the n elements used on receive can be written
in vector form as:

w =
[
w1 w2 w3 · · · wn

]T
, (2)

where T denotes the vector transpose operation. Using (1)
and (2), we now can write the complete, two-way pulse-
echo system PSF, P , as follows:

P = Sw, (3)

the propagation matrix multiplied by the receive weighting
vector. Note that this results in the 1-D column vector, P ,
of length p the total number of points in 3-D space in which
the system PSF is measured.

This formulation can be expanded to describe the PSF
as a function of time. In this case, the receive weightings
would be a function of element number and time, essen-
tially forming the coefficients of a FIR filter on each re-
ceive channel. Adequate spatial and temporal sampling of
the 3-D PSF yields huge propagation matrices. Therefore,
for this and the accompanying paper [33] we have limited
our analysis to a single instant in time and two spatial
dimensions, azimuth and range. Clearly, the elevation di-
mension matters in planar ultrasonic B-mode images, even
with acoustic lenses on linear arrays. However, restricting
our analysis to two dimensions eases visualization of the
algorithm while still providing meaningful results.

B. Cystic Resolution Metric

The goal of the cystic resolution metric is to quantify
the contrast resolution of an arbitrary broadband ultra-
sound system. We refer the reader to [32] for a more de-
tailed discussion of the derivation of the metric and high-
light the meaningful results here. The metric completely
characterizes the 4-D spatiotemporal contrast performance
for a system imaging an anechoic void in a scattering back-
ground. However, analysis at the instant in time when the
received signal is minimum (i.e., when as much of the PSF
energy as possible lies within the cyst) usually is sufficient.
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At this single instant in time, the PSF can be expressed
as a function of 3-D space at the time of interest. The
signal-to-noise ratio (SNR) also is considered at the time
of interest (SNRto). The contrast resolution at this instant
in time is defined as the ratio of the rms signal received
from the cyst to the rms signal received when the cyst is
absent [32]:

Ct0 =

√√√√√1 + SNR2
to

Eout

Etot

1 + SNR2
to

, (4)

where Eout is the PSF energy outside the cyst and Etot is
the total PSF energy, both at time to. Eq. (4) describes
the contrast at the center of an anechoic cyst embedded
in a speckle-generating background obtained by an imag-
ing system with a given PSF and electronic SNR defined
statistically by SNRto . Note that this metric quantifies the
contrast at a particular point in space (the center of the
cyst) and at a particular instant in time. This is differ-
ent than a measure of overall cystic contrast. Overall cys-
tic contrast is typically computed from a B-mode image
and compares the signal inside the cyst to the signal of a
speckle region outside the cyst [36]. Neglecting electronic
noise, SNRto becomes infinite and (4) can be modified to
the equation for contrast presented in [31], which is simply
the square root of the ratio of the PSF energy outside the
cyst and the total PSF energy:

Cto =
√

Eout

Etot
. (5)

The contrast for cysts of different sizes can be computed
using the above expressions for cystic contrast, and system
performance can be characterized as a function of cyst size
as in [29]–[32]. Note that the best achievable contrast oc-
curs when the cyst void encompasses the entire PSF. In
this scenario, Cto in (5) would be 0. Therefore, when quan-
tifying cystic contrast, a Cto value closer to 0, or more
negative on a decibel scale, indicates better performance.
This metric can be used for 4-D spatiotemporal analysis
of broadband ultrasound systems, but 3-D spatial anal-
ysis using (4) or (5) is typically adequate to characterize
scanner performance as temporal analysis usually does not
provide critical information. Note that, in certain cases, it
is valuable to compute the metric with cysts at different
locations to quantify the depth of field, the effect of dy-
namic focusing, and other factors pertaining to the shift
variance of the imaging system. Note also that, although
the metric can be used to determine cystic resolution, it
also can be used to optimize system parameters by com-
puting contrast as a function of cyst size and determining
parameter values that maximize the contrast at the cyst
sizes of interest.

C. Linearly Constrained Least Squares Apodization Design

One conspicuous result of the above resolution metric
is that cystic contrast, or our objective function, is de-
fined in terms of the spatiotemporal PSF energy. In fact,

contrast would be maximum if all the energy of the PSF
lay inside the void of the cyst. Whereas beamplot details
can be misleading about overall image quality, this met-
ric considers the PSF globally to determine the impact on
cystic contrast. Contrast improves when the PSF energy
outside the cyst boundary is reduced or the PSF energy
inside the cyst is increased. The cystic resolution metric
defines a simple objective function for maximizing cystic
contrast. The reader should note that different objective
functions could be formulated, such as improving point
contrast. But, for the discussion presented here, we focus
on improving cystic contrast.

Cystic contrast is degraded by the presence of PSF en-
ergy outside the cyst. We minimize this energy by solving
for the set of receive aperture weights that, when applied
to the synthetic receive element responses, will yield a PSF
with minimum energy outside the designated cyst bound-
ary. Combining the above resolution metric with our lin-
ear algebra formulation of the PSF, our beam synthesis
problem becomes determining the vector of weights that
minimize the PSF energy outside the cyst boundary sub-
ject to a linear constraint to avoid the trivial case of all
the receive weights set equal to zero. This is analogous to
the problem of solving for the set of FIR filter coefficients
that minimize the energy in the stopband.

Assuming the PSF is focused at the center of the cyst,
the algorithm is initialized by selecting the spatial points
of the PSF that lie outside the cyst boundary. We form
the associated propagation matrix, S, that has as many
rows as the number of points outside the cyst region and
as many columns as elements in the active receive aper-
ture. Therefore, each column of the S matrix is one fo-
cused, synthetic, receive-element response at all the spa-
tial points outside the cyst boundary. Ranganathan and
Walker’s MSSE beamformer design approach outlined in
[22] and [23] uses focused or unfocused aperture propaga-
tion matrices. Although imaging scenarios exist with un-
focused apertures, for the CLS apodization design tech-
nique presented here, we prefocus our two-way PSFs so
that the peak of the mainlobe lies in the center of the cyst
boundary. This allows us to maximize the cost function in
(5), cystic contrast. Using unfocused apertures is possible
with the CLS formulation, but unfocused apertures typi-
cally would not be used for imaging cysts so a new cost
function should be derived to reflect the system’s intended
application.

The CLS algorithm calculates the weights that mini-
mize the energy in the sidelobe regions while simultane-
ously maintaining a peak gain at the center of the cyst.
These weights are determined from the CLS problem:

min
w

‖Sw‖2 subject to the linear constraint CT w = 1.
(6)

In this expression ‖ • ‖2 denotes the square of the �2-
norm and the row vector CT has elements corresponding to
the amplitude of each synthetic receive-element response.
More specifically, CT is a vector of the amplitudes of the
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receive-element responses at the focus in the center of the
cyst. The expression in (6) is common in the signal process-
ing literature, and drawing upon [37] the optimal receive
aperture weightings are given by:

wopt = (ST S)−1C[CT (ST S)−1C]−1, (7)

where (•)−1 denotes the matrix inverse operation. Eq. (7)
provides a simple method to calculate the receive weight-
ings that will minimize the energy in the PSF outside a
specified mainlobe region while simultaneously achieving
peak gain inside the mainlobe region. The optimal receive
weights minimize Eout in (5), so we expect to see improved
cystic contrast using the LCLS apodization windows over
commonly used windows such as the flat, Hamming and
Nuttall [4] windows.

D. Linearly Constrained Least Squares Apodization Design
with Weighting Function

In certain applications, the PSF characteristics at spe-
cific spatial positions may be more important than others
because of the effects that the PSF has on point resolution
and system contrast. For example, in hyperthermia appli-
cations, the ultrasonic field pattern requires high-power
levels at some points while reducing the power deposi-
tion at other potential hot spots [17]. In other applica-
tions, it may be more important to reduce sidelobe lev-
els than to precisely control the mainlobe. In these cases
and others, we can incorporate a weighting function, g,
that emphasizes or deemphasizes certain spatial points in
the PSF during the apodization design procedure. The
LCLS apodization design problem can be rewritten with
the weighting function as:

min
w

‖gdSw‖2 subject to the linear constraint CT w = 1,
(8)

where gd is a diagonal p × p matrix with elements of g
along the 0th diagonal. The elements of g have a large value
when minimizing PSF energy is important and smaller val-
ues when the PSF energy is less critical. The solution for
optimal receive weightings, drawing upon [37] is:

wopt =
(
ST gT

d gdS
)−1

C
[
CT

(
ST gT

d gdS
)−1

C
]−1

.
(9)

E. Quadratically Constrained Least Squares Apodization
Design

The LCLS apodization design algorithm minimized the
energy in the PSF outside a given region of the mainlobe.
By doing so, the cystic contrast should improve according
to (5). This analysis minimizes the numerator of (5); how-
ever, it ignores the denominator. As a result, although the
energy outside the cyst will be minimized, the total PSF
energy also could be decreased thus limiting cystic con-
trast improvements. We, therefore, develop an alternate
approach in which we minimize the energy of the PSF

outside a given boundary while at the same time keeping
the energy of the PSF inside the boundary constant. This
formulation becomes similar to the earlier beam synthesis
problem of creating eigenfilters [8], [24]. In the FIR eigen-
filter design case, the energy constraint on the filter coef-
ficients is usually just the quadratic constraint wT w = 1
that constrains the total energy of the filter’s frequency
response to be unity. However, for broadband beamform-
ers, this constraint is meaningless, and we must devise a
new formulation [24]. The modified quadratic constraint
is straightforward given the cystic resolution metric. We
wish to minimize Eout while maximizing Etot in (5), and
we can change Etot to just the PSF energy inside the cyst
boundary, Ein. Note that this problem can be set up as
a multiple objective optimization problem [27], [38]. How-
ever, that approach does not yield an intuitive optimal so-
lution whereas as using the cystic resolution metric does.
Therefore, we choose to formulate this problem using a
quadratically constrained least squares formulation:

min
w

‖Soutw‖2 subject to the quadratic constraint

‖Sinw‖2 = 1, (10)

where ‖ • ‖2 denotes the square of the �2-norm, Sout is
the propagation matrix for all the spatial points of the
PSF lying outside the cyst boundary, and Sin is the prop-
agation matrix for all the spatial points of the PSF lying
inside the cyst boundary. Note that the quadratic con-
straint essentially keeps the energy of the PSF inside the
cyst constant. Drawing upon [24], [39]–[41] the optimal
receive aperture weightings satisfying the quadratic con-
straint is the generalized eigenvector, weig , corresponding
to the minimum generalized eigenvalue resulting from the
generalized eigenvalue decomposition problem of ST

outSout
and ST

inSin. The generalized eigenvalue problem [39] for a
matrix pair, (A, B) both n × n matrices, is finding the
eigenvalues, λk, and the eigenvectors, xk �= 0, such that:

Axk = λkBxk. (11)

The number of eigenvalues, k, is dependent upon the
rank of matrix B. One of the main advantages of the
QCLS technique is that no matrix inversion is required to
solve for the optimal apodization profile, unlike the LCLS
apodization design.

F. Quadratically Constrained Least Squares Apodization
Design with Weighting Function

As with the LCLS apodization design, a weighting func-
tion, g, can be added that emphasizes or deemphasizes cer-
tain regions of the PSF during the minimization process.
Rewriting the QCLS apodization design problem above
with the added weighting function we arrive at:

min
w

‖goutSoutw‖2 subject to the quadratic constraint

‖ginSinw‖2 = 1, (12)
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where gout is a diagonal p × p matrix with elements of g
associated with the spatial points of the PSF outside the
cyst boundary along the 0th diagonal, and gin is a diagonal
q× q matrix with elements of g associated with the spatial
points of the PSF inside the cyst boundary along the 0th

diagonal. We solve this problem by forming the Lagrangian
and using the necessary conditions for a minimum:

L(w, λ)=wT ST
outg

T
outgoutSoutw−λ

(
wT ST

ing
T
inginSinw−1

)
,

(13)

where λ is the associated Lagrange multiplier. Following
the Kuhn-Tucker conditions, a necessary condition for a
minimum is that (∂L/∂w) = 0 [38]. Thus, taking the as-
sociated partial derivative of the Lagrangian with respect
to the weighting vector we arrive at:

ST
outg

T
outgoutSoutw = λST

ingT
inginSinw. (14)

Therefore, the set of optimal receive weightings satisfy-
ing (14) is again the generalized eigenvector, weig , corre-
sponding to the minimum generalized eigenvalue resulting
from the generalized eigenvalue decomposition problem of
ST

outg
T
outgoutSout and ST

ingT
inginSin.

G. Reduced Computational Cost Through Symmetry
Relations

The computation of CLS apodization profiles requires
significant resources due to the large propagation matri-
ces and matrix inverse operations (for the LCLS design
method). In order to reduce the computational complexity
of the algorithm, we take advantage of the lateral symme-
try present in the system PSF for symmetric, nonsteered
apertures. This symmetry means that we can use just
half of the system PSF for the calculations of the optimal
weightings. The propagation matrix, S, then becomes:

S =

⎡
⎢⎢⎢⎣

s1,1 s1,2 · · · s1,n

s2,1 · · · · ·
...

...
. . .

...
sp/2,1 · · · · sp/2,n

⎤
⎥⎥⎥⎦ , (15)

where S is a (p/2) × (n) matrix, consisting of the pres-
sure field at only p/2 points in space for each element
[1, 2, . . . n].

The symmetry of the nonsteered receive aperture is an-
other property that can be exploited to reduce compu-
tational cost. As shown in Fig. 1, pairs of elements can
be grouped together that are the same distance from the
center axis of the array. Pairing is possible because these
elements should have the same weights applied, assuming
no beam steering and an even number of elements in the
aperture. Therefore, the propagation matrix can be rewrit-
ten:

S =

⎡
⎢⎢⎢⎣

s1,1,n s1,2,n−1 · · · s1,n/2,n/2+1
s2,1,n · · · · ·

...
...

. . .
...

sp/2,1,n · · · · sp/2,n/2,n/2+1

⎤
⎥⎥⎥⎦ ,

(16)

Fig. 1. Exploitation of symmetry for reduced computational cost.
The aperture is symmetric about the center axis; therefore, pairs of
elements that would have the same weights are grouped together.
Also, the lateral symmetry in the PSF about the same center axis
allows for analyzing just one-half of the PSF. This symmetry assumes
a symmetric, nonsteered aperture.

where si,j,k is the response at the point i in space for the
element j plus the response for element k at the same point
in space. The aperture weights also must be reshaped as:

w =
[
w1,n w2,n−1 w3,n−2 · · · wn/2,n/2+1

]T
,

(17)

where wi,j is the weight applied for element i and element
j, respectively.

The derivation is now analogous to that in (6) and (10),
and the optimal weights can be determined directly. The
use of symmetry reduces the size of the propagation ma-
trix, S, by a factor of 2 in each dimension, for a total
reduction of a factor of 4 in memory requirements. The
computational savings will be even greater because the
necessary solution algorithms have polynomial costs as a
function of matrix size.

III. Applications

Although the CLS apodization profiles discussed above
were constructed to optimize cystic resolution, the tech-
niques are general enough to be applied in wide-ranging
scenarios. A few possible applications are described.
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A. Improved Cystic Contrast and Improved Point
Resolution

The cystic resolution metric described in [32] stated
that the point contrast of an ultrasound system imaging
a cyst is a function of the PSF energy. Neglecting system
SNR, we note that according to (5) we can improve the
contrast of a cyst in two ways. If we minimize the energy
of the PSF outside the cyst boundary, the numerator in
(5) decreases and contrast improves. Furthermore, if we
minimize the energy of the PSF outside the cyst bound-
ary and increase the energy of the PSF inside the cyst
boundary, contrast will improve even more dramatically.
The LCLS and QCLS methods described above minimize
the PSF energy outside a specified boundary subject to a
linear constraint on the weights or a quadratic constraint
on the weights, respectively. Thus, cystic contrast will be
improved by using optimal apodization profiles.

The LCLS apodization profiles produce PSFs with nar-
row mainlobes and minimum sidelobe energy. These pro-
files seem to break the governing rule of windowing in
signal processing: in order to achieve lower sidelobes, the
mainlobe must broaden, a result exhibited by traditional
apodization functions. Therefore, the LCLS PSFs are more
attractive for point imaging in general ultrasound appli-
cations, not only imaging anechoic lesions. Although the
LCLS design approach improves cystic resolution, it is not
truly optimal for imaging diffuse lesions and low echogenic-
ity cysts. In these cases a broader mainlobe may be desir-
able. Such profiles can be designed using the QCLS ap-
proach.

B. Enhanced Depth of Field

The DOF of an ultrasound imaging system is generally
defined as the axial region over which the system is in fo-
cus, or the axial region over which the system response
remains similar to the PSF at the focus. Current meth-
ods to improve DOF include transmitting at a high f/#,
dynamically receiving at low f/#’s, and dynamic receive
apodization [42]. The implementation of these techniques
lacks formal theory describing effectiveness in improving
DOF. Application of the CLS algorithms at every range
yields receive weightings that force the PSF at each inter-
rogated range to have a specific mainlobe width and the
lowest possible sidelobe energy outside that mainlobe. Ap-
plying dynamic receive apodization with these weightings
will produce similar PSFs in range and improve the DOF.

C. Optimal Apodization for Harmonic Imaging

The linear algebra formulation of the PSF requires lin-
ear superposition on receive but places no linearity con-
straint on transmit. Conventionally, ultrasound imaging
systems assume that the propagation of the sound pulse
on transmit is linear and that the receive signal has the
same frequency content as that of the transmitted pulse.
However, the propagation process is substantially nonlin-
ear, and it is possible to receive echoes whose energy con-
tent is shifted to harmonics of the fundamental transmit

frequency. Imaging with these higher harmonic echoes can
improve contrast and resolution in the resulting images.
Our CLS techniques can be adapted to calculate receive
apodization profiles that take nonlinear propagation into
account. The nonlinear propagation of the transmit beam
can be determined analytically, experimentally, or through
simulation and substituted into the linear algebra formu-
lation of the PSF. Assuming linear propagation on receive,
the algorithm will design receive aperture functions that
minimize the energy of the two-way PSF outside a speci-
fied boundary. Eq. (7) which is rewritten below, describes
the relationship between the harmonic imaging scenario
and the receive aperture weightings that will minimize the
sidelobe energy of the PSF. Note that the propagation ma-
trix S will have to take into account the nonlinear propa-
gation effects of the transmit acoustic beam:

wopt =
(
ST S

)−1
C

[
CT

(
ST S

)−1
C

]−1
.

D. Arbitrary PSF Shapes for General Imaging,
Hyperthermia or Doppler Applications

In some scenarios, it may be more important to achieve
PSFs with greater sidelobe rolloff. The weighted CLS for-
mulations described above can achieve such system re-
sponses by incorporating a weight function that increases
with distance from the mainlobe. It also is possible with
the weighted CLS algorithms to design PSFs with localized
areas of reduced energy. It should be noted that we focused
on producing apodizations that minimized the PSF energy
in the region lying outside a (typically spherical) void. This
procedure was implemented in order to optimize cystic res-
olution. However, there is no need that the mainlobe and
sidelobe regions be delineated according to the shape of
a cyst. The CLS formulations can be adapted to design
optimal PSFs for a variety of ultrasound applications.

In ultrasound hyperthermia procedures, during which
control of the acoustic energy delivered to the tissue is
of great concern [17], designing PSFs with multiple main-
lobes or “hot spots” while minimizing energy transfer at
other locations could improve treatment efficacy as well
as shorten treatment times. It is possible with the CLS
formulation to specify regions of the PSF in which deliv-
ered energy should be maximized while at the same time
specifying regions in which acoustic energy should be mini-
mized. In the LCLS design case, the linear constraint could
be augmented to constrain the peak gain at a number of
point locations, which would result in the CT vector of
(6) becoming a matrix whose row size corresponded to the
number of hot spots. The QCLS algorithm may produce
even better results for this scenario because the quadratic
constraint could be modified to include all regions in which
the energy of the PSF should be constant.

Many authors have considered the issue of improving
the estimation of the blood flow velocity vectors by mod-
ulating the acoustic beam in the azimuthal direction us-
ing the receive apodization function and using an autocor-
relation estimator to determine the lateral velocity [43],
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[44]. Similar CLS formulations could be designed in order
to produce apodization profiles that generate PSFs with
modulation in the azimuthal direction as well as the eleva-
tion dimension. These apodization profiles may be able to
produce spatial modulation frequencies higher than those
previously produced, reducing the variance of the lateral
motion estimates [45].

IV. Discussion

The CLS apodization design is a general formulation
for designing mathematically optimal system responses.
We describe formulation of this approach for a variety of
imaging applications. The required propagation functions
can be determined through experiments, simulations, or
theory.

Implementing CLS apodization is conceptually and
practically simple. Apodization weights could be precal-
culated and stored for the intended application, then re-
trieved from a look-up table during imaging. Current sys-
tems already use dynamic apodization, so implementing
the CLS profiles on clinical scanners should be straightfor-
ward. However, in order for CLS apodization to be imple-
mented on a clinical system, thorough characterization of
the system is required, including the spatial variance of the
impulse response. The system geometry and beamforming
parameters will determine the degree of spatial variance in
the impulse response, which will in turn determine whether
or not this must be taken into account during optimization.
Either way, once the system has been well characterized,
our algorithms save a great deal of development time by
obviating iterative design.

For cyst imaging, successive imaging with apodiza-
tion profiles corresponding to all different design cyst
radii would be impractical. The question becomes, “which
apodization profiles should be used?” Simulation results,
presented in an accompanying paper [33], show that CLS
apodization profiles are relatively stable across a range
of cyst sizes. In fact, profiles calculated for specific cyst
radii outperform conventional windows at all cyst sizes.
Choosing the appropriate apodization profile is straight-
forward when analyzed with the cystic resolution metric.
Each apodization yields a contrast curve as a function of
cyst radius. Therefore, choosing the optimal profile simply
requires selecting the apodization that achieves a speci-
fied level of contrast for the smallest cyst, or choosing the
profile that yields the best contrast for a given cyst size.

The authors have not encountered any ill-posed design
cases in which the CLS algorithms become unstable. How-
ever, scenarios certainly exist, such as using an extremely
large design cyst radius, where the ST

outSout matrix be-
comes ill-conditioned and rank deficient because no sig-
nificant amount of PSF energy lies outside the large cyst.
Furthermore, because of the large propagation matrices,
numerical instability due to round-off errors remains a con-
cern. Identifying the limitations of these algorithms is an
area of future work. For most practical design considera-

Fig. 2. One-dimensional representation of imaging a cyst with the
two CLS PSFs. In the LCLS case, the resulting image of the cyst
has sharper defined edges. In the QCLS case the resulting image has
blurred edges but more overall contrast than the LCLS imaged cyst.

tions, however, the CLS algorithms perform as expected
yielding optimal apodization profiles.

The authors acknowledge that the resolution metric,
although greatly improving theoretical design considera-
tions by accurately predicting system performance, still
has some shortcomings. The most worrisome is that the
metric describes contrast at a given point in space at a spe-
cific instant in time. The metric quantifies contrast of the
cyst center versus the background, not the overall cystic
contrast. Incorporating detection algorithms, where con-
trast is defined relative to a speckle region (such as those
presented in [36] and [46]) may be necessary. This notion
raises further questions regarding cyst detectability and
observer efficiency [47]. Which cyst is easier to detect: a
cyst with well-defined boundaries but low overall contrast,
or a cyst with blurred edges but greater maximum con-
trast? A simple 1-D analysis yields some insights (Fig. 2).

If we view image formation as a simple convolution be-
tween the impulse response of the imaging system and the
target function, the CLS algorithms produce two very dif-
ferent results. In one dimension the cyst is modeled as
a rect function subtracted from a constant, i.e., (1-rect).
In the LCLS case, the resulting PSF resembles a trian-
gle function whose base corresponds to the width of the
cyst. This shape stems from the implicit spatial weight-
ing of the LCLS algorithm combined with diffraction. The
linear constraint forces the PSF to peak at the center of
the cyst while minimizing the PSF energy outside the cyst
boundary. The resulting image of the cyst will be a smooth,
inverted Gaussian-like function. Note in Fig. 2 that the re-
sulting convolutions are not to scale with the original in-
puts. In the QCLS case, the cyst remains the same, but the
resulting PSF somewhat resembles a rect function whose
width corresponds to the size of the cyst. Just like the
LCLS case, this shape arises due to the implicit spatial
weighting of the algorithm and diffraction. The quadratic
constraint weights the spatial points inside the boundary
of the cyst equally while trying to minimize the ratio of
PSF energy outside the cyst to PSF energy inside the cyst.
The resulting image of the cyst will be an inverted trian-
gle function whose negative peak is deeper than that of
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the smooth, inverted Gaussian resulting from the LCLS
apodized PSF. It is not obvious which cyst would be more
readily detectable. One has sharper edges (LCLS) but the
other has a greater maximum contrast. This effect also was
seen in Johnson’s [30] analysis comparing Hamming and
flat apodization. We hope to explore this issue through a
human observer study in which detection of cysts using
the CLS apodization profiles will be investigated.

The design method described here is different than that
described in [22] for several reasons. First, we do not re-
quire a goal PSF in our minimization. Second, our method
is considerably easier to implement for broadband imaging
systems, while still taking into account the 4-D spatiotem-
poral nature of the PSF. Another difference is that the
algorithm described by Ranganathan and Walker [22] has
no constraints on the design weights that could lead to
instability of the results. Our algorithm is similar to the
MSSE method described by Ranganathan and Walker [22]
in that it is general enough to apply to both one-way and
two-way responses, continuous wave and broadband oper-
ations, and can be used to design apertures for a variety
of applications. Another similarity is that the entire PSF
is used to obtain a least squares solution to an overdeter-
mined system of equations.

Our method of apodization profile design for coherent
imaging systems is similar to many previously described
array pattern synthesis techniques. The LCLS formulation
is similar to the array pattern synthesis technique by Tseng
[6]. However, we use a broadband formulation, a different
linear constraint on the weights, and our algorithm does
not require iterations to achieve an optimum. This QCLS
formulation is similar to the constrained eigenfilter design
[8], [24]; however, we use a broadband formulation and a
quadratic constraint on the energy in the PSF.

Keitmann-Curdes et al. [25] used a formulation sim-
ilar to our QCLS formulation in designing optimal
apodizations in simulated ultrasound fields. However, their
method minimized the energy in the sidelobes of the sys-
tem response over time. The use of space-time PSFs in
their model neglects the inherent shift variant proper-
ties of the imaging system and integrating the pressure
field power over the time axis is not a realistic mea-
sure of the system’s spatial impulse response. Schwann et
al. [26] elegantly used two different resolution criteria to
design frequency-dependent receive apodization profiles.
Their resolution criteria: maximum to average ratio and
the fill-in measure relate directly to cystic contrast. How-
ever, their multiple objective formulation requires com-
putationally expensive iterative methods to arrive at one
Pareto optimum solution. Furthermore, given a Pareto op-
timal frontier, a curve of all the Pareto optimal solutions
as a function of the objectives, for the maximum to av-
erage ratio versus fill-in criteria, it is unclear as to what
point on that curve is truly optimal for clinical ultrasound
imaging. The contrast curves we produce using the cys-
tic resolution metric, however, provide a straightforward
approach for parameter optimization.

Our method offers an elegant path for optimizing the

ultrasound system’s PSF and has potential application to
apodization design for many varied applications. Overall,
the CLS apodization design technique has the potential
to improve the contrast of anechoic legions and improve
beamforming in general by forming PSFs with narrow
mainlobes and low sidelobes. The technique also may aid
in the design of system responses used for hyperthermia
applications and Doppler signal processing. Stability of
the CLS algorithms in the presence of sound speed er-
rors as well as changing system parameters needs to be
investigated. Simulation results addressing these issues for
the CLS apodization design technique and its applica-
tions are described in an accompanying paper [33]. Re-
sults show that CLS apodization profiles improve cystic
contrast compared to many conventional windows as well
as improve DOF.

V. Conclusions

The CLS apodization design technique presented in this
paper is a general beamforming method that can be used
to design apertures for specific applications. It achieves
mathematically optimal cystic contrast by designing math-
ematically optimal aperture weights for a given system.
The contrast is optimized because the weights minimize
the energy of the PSF outside the specified cyst bound-
ary while either maintaining peak gain inside the cyst
(LCLS) or maintaining constant PSF energy inside the
cyst (QCLS). The CLS apodization design technique also
has the potential to improve point resolution by forming
PSFs that have narrower mainlobes and lower sidelobes
than PSFs generated from conventional windows. There-
fore, we believe the CLS apodization design algorithms
have significant potential to improve ultrasound beam-
forming and can be applied in any ultrasound application
in which the system response is well characterized.
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Optimal Apodization Design for Medical
Ultrasound Using Constrained Least Squares

Part II: Simulation Results
Drake A. Guenther and William F. Walker, Member, IEEE

Abstract—In the first part of this work, we introduced a
novel general ultrasound apodization design method using
constrained least squares (CLS). The technique allows for
the design of system spatial impulse responses with narrow
mainlobes and low sidelobes. In the linear constrained least
squares (LCLS) formulation, the energy of the point spread
function (PSF) outside a certain mainlobe boundary was
minimized while maintaining a peak gain at the focus. In
the quadratic constrained least squares (QCLS) formula-
tion, the energy of the PSF outside a certain boundary was
minimized, and the energy of the PSF inside the boundary
was held constant. In this paper, we present simulation re-
sults that demonstrate the application of the CLS methods
to obtain optimal system responses. We investigate the sta-
bility of the CLS apodization design methods with respect
to errors in the assumed wave propagation speed. We also
present simulation results that implement the CLS design
techniques to improve cystic resolution. According to novel
performance metrics, our apodization profiles improve cys-
tic resolution by 3 dB to 10 dB over conventional apodiza-
tions such as the flat, Hamming, and Nuttall windows. We
also show results using the CLS techniques to improve con-
ventional depth of field (DOF).

I. Introduction

In an accompanying paper [1], we describe two apodiza-
tion design methods using a constrained least squares

(CLS) formulation. The algorithms allow for the synthe-
sis of beam patterns with a specified mainlobe width and
minimum energy in the sidelobe regions. The CLS tech-
niques express the system spatial impulse response (PSF)
using a linear algebra formulation of the aperture weights
and a propagation function. The propagation matrix uses
superposition to describe the contribution of each trans-
ducer element at each field point at an instant in time and
can be determined from experiment, simulation, or theory.
The CLS formulations provide closed form solutions for the
aperture weightings that minimize the energy of the PSF
outside some specified boundary subject to either a linear
or quadratic constraint on the weights. A brief review of
the major results derived in [1] is provided below.
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A. Linear Algebra Formulation of the Broadband Spatial
Impulse Response

The sensitivity field for a transducer during pulse-echo
imaging can be expressed as the product of a propagation
matrix, S, and a set of aperture weightings, w. S can be de-
rived from the Rayleigh-Sommerfeld diffraction equation,
outlined in [2] and may include a term relating to limited
element angular response [3] and frequency-dependent at-
tenuation. The propagation matrix also can be simulated
or measured experimentally. For our formulation, S is a
function of the transmit aperture weights, the excitation
pulse, and the individual element spatial impulse responses
of the transmit and receive apertures. The two-way PSF,
P , is then simply the matrix multiplication between the
propagation matrix and the weight vector:

P = Sw. (1)

B. Linearly Constrained Least Squares Apodization Design

In the first CLS apodization design technique, we min-
imize the energy of the PSF outside a certain main-
lobe region subject to a linear constraint on the aper-
ture weights. Although our formulation can account for the
four-dimensional (4-D) nature of the spatiotemporal PSF,
we restrict our analysis to two spatial dimensions, azimuth
and range, and a single instant in time. The mainlobe re-
gion is defined by a circle of a specified radius centered
at the peak of the 2-D PSF. Drawing upon [4], we can
derive the least squares solution for the receive aperture
weightings that produce the desired PSF:

wopt =
(
ST S

)−1
C

[
CT

(
ST S

)−1
C

]−1
, (2)

where the superscripts T and −1 denote the transpose and
matrix inverse operations, respectively. S represents the
propagation matrix for every spatial point of the PSF in
which energy is to be minimized, and C is the linear con-
straint vector. The linear constraint, CT w = 1, maintains
a peak gain of the PSF at the intended focus. C has ele-
ments corresponding to the individual amplitude response
of each synthetic receive element at the intended focus.

C. Quadratically Constrained Least Squares Apodization
Design

The second CLS apodization design technique mini-
mizes the energy of the PSF outside the defined mainlobe

0885–3010/$25.00 c© 2007 IEEE
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region, while maintaining constant energy of the PSF in-
side the mainlobe region. We formulate this problem as
a least squares minimization subject to a quadratic con-
straint on the weights. This method requires the formation
of two propagation matrices. The first, Sout, represents the
propagation matrix associated with every point of the PSF
in which energy is to be minimized, as in (2). The second,
Sin, represents the propagation matrix associated with ev-
ery point of the PSF lying inside the mainlobe bound-
ary and appears in the quadratic constraint, ‖Sinw‖2 = 1,
where ‖ • ‖2 denotes the square of the �2-norm. Drawing
upon [5] and [6], the set of optimal receive weightings for
this scenario is given by the generalized eigenvector corre-
sponding to the minimum generalized eigenvalue resulting
from the generalized eigenvalue decomposition problem of
ST

outSout and ST
inSin:

ST
outSoutw = λST

inSinw, (3)

where the weight vector w is the generalized eigenvector
and λ is the associated generalized eigenvalue.

D. Reduced Computational Cost Through Symmetry
Relations

The CLS apodization design techniques can become
computationally expensive rather easily due to the large
propagation matrices and the computation of the ma-
trix inverse (only for the linear constrained least squares
(LCLS) design case). In order to reduce this computational
complexity, we exploit the lateral symmetry of the aper-
ture and the PSFs that arise from symmetric, nonsteered
apertures [1]. Due to the symmetry relationships, we need
only compute half of the aperture weights using just half
of the PSF, thereby enabling more efficient computation
of the apodization profiles. Note that, although the design
and calculation of the weights is computationally costly,
the application of the weights is trivial in modern ultra-
sound system hardware. Once the CLS apodization profiles
have been calculated, they can be stored in a lookup table
and applied as dynamic apodization with range.

All the formulas for the design methods described above
are thoroughly described and derived in [1]. This paper
presents results of simulations that were implemented to
demonstrate the validity and stability of the LCLS and
quadratic constrained least squares (QCLS) apodization
design techniques.

II. Simulations

In order to test our apodization design algorithms and
to highlight the utility of the cystic resolution metric [8]
we performed simulations using DELFI [7], a custom ul-
trasound simulation tool that efficiently computes spatial
pulse-echo responses. All simulations were performed un-
der MATLAB (The Mathworks, Inc., Natick, MA). Spa-
tial pulse-echo responses were computed by transmitting

TABLE I
Parameters Used in General CLS Apodization Design and

Speed of Sound Simulations.

Parameter Value

Number of elements 192
Element pitch 200 µm

Focus 2.0 cm
PSF window lateral sampling interval 34 µm
PSF window axial sampling interval 20 µm
Ultrasonic wave propagation speed 1545 m/s

Frequency 6.5 MHz
Fractional bandwidth 50%

TABLE II
Parameters Used in General CLS Apodization Design and

F/# Simulations.

Parameter Value

Number of elements 192
Element pitch 150 µm

Focus 2.0 cm
PSF window lateral sampling interval 25 µm
PSF window axial sampling interval 20 µm
Ultrasonic wave propagation speed 1545 m/s

Frequency 10 MHz
Fractional bandwidth 75%

a focused wave from a fixed f/# aperture and synthet-
ically receiving on each individual element in the array.
Uniform apodization was applied on transmit. Dynamic
receive focusing was used to calculate multiple PSFs at
varying depths. The focal ranges on receive were 1 cm,
1.5 cm, 2 cm, 2.5 cm, and 3 cm. The PSFs were computed
at the instant in time corresponding to the given receive
depth and over a 2-D planar area in azimuth and range
that encompassed the entire extent of the PSF.

We simulated two different 1-D linear arrays. The first
array, whose system parameters are described in Table I,
operated at 6.5 MHz center frequency with a 50% frac-
tional bandwidth calculated as:

Fractional BW(%) =
BW
fc

× 100, (4)

where fc is the center frequency of the transmitted pulse in
megahertz and BW is the −6 dB bandwidth of the pulse
also in megahertz. The array had fixed transmit focus at
2 cm (f/2). The 6.5 MHz array was used for general CLS
apodization design and for the speed of sound simulations.
The second array was more aggressive with a higher op-
erating frequency of 10 MHz with a 75% fractional band-
width. We kept the transmit focus fixed at 2 cm but used
a larger f/# on transmit (f/4). This array also was used
for apodization design and for the varying receive f/# sim-
ulations. The system parameters for the second array are
described in Table II.

Constrained least squares apodization profiles were de-
signed and analyzed for improvements in system perfor-
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mance relative to conventional apodization. All calcula-
tions were performed on an IBM Intellistation Z Pro (Pro-
cessor speed 2.80 GHz, 3.00 Gb RAM, IBM Corporation,
Armonk, NY). In general the CLS apodization profiles
took less than two minutes of CPU time to generate, and
the QCLS profiles were faster to generate than the LCLS
profiles because they do not require computing a matrix
inverse. The 2-D PSFs generated using DELFI [7] were
used to calculate the optimal receive weights according
to the CLS algorithms outlined above. CLS apodization
profiles were computed for each dynamic receive response
because of the spatial shift variance of the PSF with range.
The sidelobe region was defined by centering a cyst of a
specified radius about the mainlobe peak of the PSF. As
this cyst specifies the mainlobe and sidelobe regions of the
PSF, we call it the “design cyst.” Cystic contrast, neglect-
ing electronic signal-to-noise ratio (SNR), was computed
according to the equation given in [8] as:

C =
√

Eout

Etot
, (5)

where Eout is the energy of the PSF outside the main-
lobe boundary, and Etot is the entire energy of the PSF.
Note that the best achievable contrast occurs when the
cyst void encompasses the entire PSF. In this scenario, C
in (5) would be 0. Therefore, when quantifying cystic con-
trast, a C value closer to 0, or more negative on a decibel
scale, indicates better performance. Corresponding cystic
contrast curves as a function of cyst radius were calculated
for the CLS windows and compared to those for the flat,
Hamming, and the Nuttall [21] windows.

To investigate the performance of the algorithms, we
computed apodization profiles for a large number of design
cyst radii. Specifically, we present results of LCLS and
QCLS aperture weights with design cyst radii from 0.1 mm
to 2.0 mm. We also computed the weights that minimized
the mainlobe width for the LCLS design case in order to
test the limits of this particular algorithm.

Because most commercial systems use dynamic receive
focusing to improve image contrast and extend the conven-
tional DOF, we investigated the stability of our algorithms
in this scenario. We calculated PSFs at varying depths on
receive (1.0 cm, 1.5 cm, 2.0 cm (Tx focus), 2.5 cm, and
3.0 cm) then applied the CLS algorithms on each PSF.
The resulting aperture weights should improve DOF be-
cause the goal of applying the CLS algorithms was to make
PSFs with a similar mainlobe and minimum sidelobe en-
ergy.

An important system parameter that affects image
quality and contrast is the f/# used on receive. It is an
important parameter for a linear array because dynamic
focusing schemes that maintain constant f/# throughout
the image range are limited by aperture size. We investi-
gated the impact of f/# on our CLS apodization design
algorithms by computing contrast curves as a function of
cyst radius for varying f/#’s.

Errors in the assumed sound wave propagation velocity
adversely affect an ultrasound system’s response, poten-

tially degrading the resulting images [9]. Because our CLS
technique uses dynamic shift variant aperture weights, er-
rors in the assumed sound speed are of great concern.
Therefore, we implemented simulations in which the as-
sumed propagation speed was underestimated by 1%, 3%,
and 5%, and overestimated by 1%, 3%, and 5%. The PSFs
were calculated at the instant in time corresponding to
the intended transmit focus of 2 cm assuming 1545 m/s.
Due to different propagation speeds through the medium,
however, the PSFs shifted in range. The purpose of these
simulations was to investigate the robustness of our algo-
rithm to incorrect assumptions about the wave propaga-
tion speed.

III. Results

Optimal receive apodization profiles were computed for
a linear 1-D array according to the CLS formulations dis-
cussed above. Cystic resolution curves were calculated in
order to visualize and quantify the changes in system per-
formance using the CLS windows compared to the conven-
tional windows. Apodization profiles were computed for a
range of design cyst radii from 0.1 mm to 2.0 mm. For
every design cyst radius, the CLS apodization profiles re-
sulted in PSFs that had lower energy in the sidelobe re-
gions compared to the other windows.

Fig. 1 shows results for the 6.5 MHz simulations with
a fixed transmit focus at 2 cm (f/2) and dynamic receive
focus at 2 cm (f/1). The plot on the left shows an up
close view of the mainlobe region of the integrated lateral
beamplots using different apodization schemes. All lateral
beamplots were computed by taking the square root of the
energy of the 2-D PSF summed in range. The CLS pro-
files were designed using a cyst radius of 0.6 mm. We also
used the LCLS algorithm to design an apodization profile
that produces a PSF with the narrowest possible mainlobe.
This beamplot is the mCLS plot in Fig. 1 designated by a
� marker. The full width at half maximums (FWHM),
−6 dB beamwidths, were 264, 304, 328, 297, 301, and
190 µm for the flat, Hamming, Nuttall, LCLS, QCLS, and
mCLS apodizations, respectively. The LCLS and QCLS
apodization profiles had smaller −6 dB beamwidths than
all but one of the conventional windows. The LCLS and
QCLS lateral beamplots have decreased sidelobe levels by
about 5 dB relative to the Hamming window, 12 dB below
the flat apodization, and almost 16 dB below the Nuttall
window. The mCLS apodization lateral beamplot has the
narrowest mainlobe (20% reduction compared to the flat
window) but the highest sidelobe levels. The plot on the
right shows the full extent of the integrated lateral beam-
plots of the PSFs with notable differences in the grating
lobe levels. The reduction of the sidelobe levels for the
LCLS and QCLS apodization profiles did result in higher
grating lobes than the Hamming and Nuttall windows, but
these larger grating lobes are around −60 dB, a typical
noise floor for diagnostic ultrasound imaging systems [10].
The mCLS lateral beamplot shows much larger grating
lobes around −40 dB.
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Fig. 1. Integrated lateral beamplots for different apodization schemes with the 1-D linear array operating at 6.5 MHz center frequency, fixed
Tx focus at 2 cm (f/2) and dynamically focused on Rx at 2 cm (f/1). The LCLS and QCLS profiles were designed with a cyst radius of
0.6 mm. Note that the LCLS and QCLS profiles yield sidelobe levels lower than and mainlobe widths comparable to all other apodizations.

A. Effects of the Design Cyst Radius on the CLS
Apodization Algorithms

Because it is unreasonable to scan through apodization
profiles for every cyst radius with conventional systems, it
is interesting to monitor the behavior of the CLS apodiza-
tion profiles with increasing design cyst radius. Further-
more, using contrast curves we can easily compare the
performance of the different apodization schemes and opti-
mize based on required operation values. In Fig. 2 we show
the performance of both the LCLS apodization windows
(left column) and the QCLS apodization windows (right
column) as we increase the design cyst radius from 0.2 mm
to 0.8 mm in 0.2 mm steps. These simulations used the
6.5 MHz linear array conditions described in Table I. The
results at different dynamic receive depths were similar so
we present one set of simulation results in Fig. 2 corre-
sponding to a dynamic receive depth of 1.5 cm. The first
row of plots, panels (a) and (b), shows the contrast curves
over cyst radii from 0.1 mm to 1.0 mm. For the LCLS
windows, (a), we see a general trend of decreased contrast
for the smaller cyst sizes when increasing the design cyst
radius. At the same time, we see greatly improved con-
trast over a large range of cyst radii for the larger design
radius curves. Overall the LCLS windows maintained rel-
atively similar contrast curves for design cyst radii of 0.4,
0.6, and 0.8 mm. These profiles improved contrast around
5 dB relative to the flat apodization scheme across the
range of larger cyst sizes (0.4 mm–1.0 mm). The QCLS
contrast curves changed more than the LCLS curves across
the range of design cyst radii. Each QCLS apodization
profile achieved the best contrast of any window for the
specific design radius; however, the QCLS profiles suffered
greater losses in contrast for cyst sizes smaller than the de-
sign cyst radius compared to the LCLS profiles designed
for the same cyst radius. This phenomenon can be seen
easily with the 0.6 mm and 0.8 mm contrast curves where

they decrease contrast by about 3 dB compared to the
flat apodization for cyst radii smaller than 0.4 mm. The
second row of plots in Fig. 2 shows the mainlobe region of
the CLS integrated lateral beamplots. The widening of the
mainlobe for the QCLS profiles is more dramatic than the
LCLS profiles. This phenomenon is to be expected due to
the formulation of the QCLS algorithm, which minimizes
the ratio of PSF energy outside the cyst to PSF energy
inside the cyst. The third row of plots, panels (e) and (f),
shows the changes in the grating lobes with different design
cyst radius.

The final row of plots in Fig. 2 shows the designed
apodization weights for each individual element. For the
most part, the CLS profiles have a typical smooth, curved
shape like many of the conventional windows; however,
the CLS windows’ behavior at the ends of the aperture is
discontinuous. These apodization profiles also show that
some outer elements have negative weights and large mag-
nitudes, a phenomenon never seen in the conventional win-
dow functions. The positive-negative discontinuity at the
edges of the aperture is indeed an intriguing result. The
outer elements in an aperture contribute high lateral spa-
tial frequency content, which can sharpen the mainlobe of
the overall response [11]. However, these elements also give
the PSF “wings,” clouds of energy outside the mainlobe
region that spread in azimuth and range. Conventional
apodization functions typically suppress the outer ele-
ments of an aperture to decrease this sidelobe energy. How-
ever, this reduces the high lateral spatial frequency con-
tent in the overall response. It appears that the positive-
negative discontinuity at the edges of the CLS apodization
functions is a novel way to sharpen the PSF’s mainlobe and
reduce the energy in the PSF’s “wings” through destruc-
tive interference.

In the simulations that used the 10 MHz array configu-
ration, we calculated CLS apodization profiles for a num-
ber of different cyst radii. Through this investigation we
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. Comparison of CLS apodization given different design cyst radii. The entire left column corresponds to the LCLS algorithm, and
the right column corresponds to the QCLS algorithm. (a) and (b) show the associated contrast curves over a range of cyst sizes compared
to the flat apodization profile. Panels (c) and (d) show the mainlobe behavior of the CLS windows. The third row, panels (e) and (f), gives
the full range of the integrated lateral beamplots. (g) and (h) plot the apodization profile versus element number. Note how the mainlobe
width trends with increasing design radius are indicative of the contrast performance between the two algorithms.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Comparison of apodization profiles with large design cyst radius. Panels (a)–(c) plot the contrast curves for design radii of 0.5 mm,
1.0 mm, and 1.5 mm, respectively. The second row of plots shows the integrated lateral beamplots. The third row of plots, panels (g)–(i),
shows the LCLS and QCLS apodization profiles as a function of element number across the aperture. Note that, for larger design radii, the
QCLS algorithm results in PSFs with multiple peaks in the mainlobe region.

observed a peculiar phenomenon for the QCLS algorithm
for the larger design cyst radii. Because the algorithm
attempts to keep the energy of the PSF inside the cyst
boundary constant, when larger design cyst radii are used,
the QCLS weights make a PSF with multiple peaks. This
is equivalent to the eigenfilter design approach in which
the frequency response ripples in the pass band [12], [13].
Fig. 3 plots (e) and (f) accurately depict this phenomenon.
These data use the 10 MHz array described in Table II
with a dynamic receive focus at 1.0 cm (f/2). The first
row of plots in Fig. 3(a)–(c), shows the contrast curves for
increasing design radii of 0.5 mm, 1.0 mm, and 1.5 mm,
respectively. Note for the larger design radii, the QCLS
algorithm results in contrast improvements ranging from
5 dB to 10 dB but poor contrast resolution for smaller cyst

sizes. Fig. 3 plots (d)–(f) show the integrated beamplots
for the LCLS and QCLS apodization profiles. Here we see
how the QCLS algorithm was able to achieve the dramatic
contrast improvements for the larger cyst sizes by having
multiple mainlobes inside the cyst boundary. Likewise, for
large design radii, the LCLS apodization profile results in
higher sidelobes inside the boundary in order to achieve
lower sidelobes outside the boundary.

The modulation of the mainlobe in the QCLS PSFs
would not be an ideal spatial response for general imaging
purposes. Notice that the shape of the QCLS apodization
profiles that yield multiple mainlobe peaks are approxi-
mately sinusoidal [Fig. 3 panels (h) and (i)]. According
to the Fraunhoffer approximation, which states that the
spatial response of an aperture is the Fourier transform
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Comparison of apodization profiles at different dynamic receive foci of 1 cm, 2 cm, and 3 cm and constant f/# (f/1). Panels (a)–(c)
show contrast curves for the different apodization schemes (flat, Hamming, Nuttall, LCLS, and QCLS). The second row of plots, (d)–(f),
show the integrated beamplots of the CLS profiles in which the dotted line corresponds to the cyst boundary used to design the windows.
Plots (g)–(i) show the magnitude of the CLS profiles across the aperture. The CLS profiles improve contrast over a range of smaller cysts
at all dynamic receive focal depths.

of the aperture function [2], a rectangular windowed sinu-
soidal aperture function should result in a lateral spatial
response resembling two sinc functions (the convolution
between a sinc and two impulses). These two sinc func-
tions correspond to the two mainlobes in the responses
seen in Fig. 3 panels (e) and (f). Furthermore, note that,
when the frequency of the sinusoid corresponding to the
aperture definition is increased [comparing panel (h) to
panel (i)], the two mainlobes of the spatial response sep-
arate further in azimuth [panel (e) and (f)]. This result is
consistent with Fourier transform theory.

Clearly imaging with a PSF that has two mainlobes
should not produce an image of a cyst with 10 dB contrast
improvement, as the contrast curves of Fig. 3 panels (b)

and (c) suggest. However, there are applications in which
lateral modulation of the PSF could prove beneficial [14],
[15]. For example, such a PSF could be used in Doppler
ultrasound for which acquiring the axial as well as lateral
component of velocity can lead to more accurate estima-
tion of the velocity vector [16]. Other applications could in-
clude designing ultrasound spatial responses for hyperther-
mia treatments during which control over localized energy
delivery is paramount [17]. We also are investigating ways
to modify the QCLS apodization design formulation to re-
duce the modulation/multiple peak effect to an equiripple,
similar to finite impulse response (FIR) filter design [18].
One possible method is to use the weighting function dis-
cussed and derived in [1]. Applying a weighting function to
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the mainlobe region of the PSF that emphasizes the focal
point compared to the surrounding area would yield a PSF
with a single mainlobe. Preliminary results show that the
weighting can be applied to the QCLS algorithm to mit-
igate the multiple mainlobe effect. The resulting QCLS
weights produce PSFs whose lateral beamplots are similar
to the LCLS beamplots in Fig. 3 panels (e) and (f) with
slightly higher sidelobes inside the cyst boundary.

B. Effects of Dynamic Receive Focusing on the CLS
Apodization Algorithms

In our simulations, we also investigated the effects of dy-
namic receive focusing on the performance of the CLS al-
gorithms. Conventional systems typically maintain a con-
stant beamwidth over a large range by transmitting on
a higher f/# and dynamically receiving with a constant,
lower f/#. Because our apodization design schemes effec-
tively control mainlobe size, we expect to see improve-
ments in DOF. For these simulations, we used the 6.5 MHz
linear array setup with the fixed transmit focus at 2 cm
(f/2), then we dynamically received focused data at 1 cm,
1.5 cm, 2 cm, 2.5 cm, and 3 cm with an f/1 aperture.
CLS apodization profiles were designed with an aggres-
sive cyst radius of 0.4 mm for the PSFs at each range.
Fig. 4 shows the results from these dynamic receive fo-
cused and apodized simulations. We show only data from
dynamic receive depths of 1 cm, 2 cm, and 3 cm because
the data at the other two depths showed similar trends.
Fig. 4 panels (a)–(c) show the contrast curves for the differ-
ent apodization schemes across cyst radii. The LCLS and
QCLS contrast curves for all three ranges are very similar,
hence why the QCLS curve is difficult to distinguish. The
reduced contrast at the 1 cm and 3 cm depths can be at-
tributed to the spreading of the mainlobe away from the
transmit focus. At all three ranges, the CLS apodization
schemes show marked contrast improvements over the flat
and Nuttall apodization schemes across a large range of
cyst sizes and reasonable improvements over the Hamming
window at smaller cyst radii. Both the Hamming and the
Nuttall window outperform the CLS apodization profiles
for cyst radii greater than 0.5 mm when receiving at 1 cm,
but these improvements are a modest gain of about 2 dB.
Panels (d)–(f) of Fig. 4 show the mainlobe characteristics
of integrated lateral beamplots using the CLS apodization
profiles. The dotted vertical lines on these images corre-
spond to the cyst boundary used to design the windows.
Mainlobes for the LCLS and QCLS windows are quite sim-
ilar for the three different ranges. The third row of plots
in Fig. 3 shows the designed apodization weights for the
LCLS and QCLS profiles across the aperture. Note that
the aperture size increases with range to maintain a con-
stant f/# on receive. These profiles show discontinuities of
the weighting function at the edges of the aperture.

In order to investigate the improvements in DOF for the
CLS algorithms compared to the conventional windows, we
looked at the beamwidths of the integrated beamplots at
−6 dB (FWHM) and −20 dB. We also show images of the

Fig. 5. Comparison of 2-D PSFs of different apodization profiles with
range on dynamic receive. The CLS profiles were designed using a
cyst radius of 0.4 mm. The system had a transmit focus at 2 cm
(f/2), then was dynamically focused and apodized at ranges of 1 cm,
1.5 cm, 2 cm, 2.5 cm, and 3 cm (f/1). Each image was normalized
and log compressed to −60 dB. Note the spreading of the mainlobe
in the conventional windows PSFs away from the transmit focus and
the relatively constant mainlobe of the CLS apodized PSFs.

2-D PSFs for the 6.5 MHz array at each range superim-
posed to qualitatively depict the constant mainlobe size
with range. In Fig. 5 we show images of the 2-D PSFs at
each range for flat, Hamming, Nuttall, LCLS, and QCLS
apodization profiles. The CLS profiles were designed using
a cyst radius of 0.4 mm. The images are 1 cm in azimuth
and extend from 0.8 cm to 3.2 cm in range. Each image
was normalized and log compressed to −60 dB. The CLS
apodization profiles maintain a relatively constant main-
lobe size through range compared to the mainlobe spread-
ing seen in the Hamming and Nuttall windows. The side-
lobes of the CLS profiles are higher than the Hamming and
Nuttall windows at the 2.5 and 3 cm depths but lower than
the large sidelobes evident in the flat apodization PSFs.
Fig. 6 plots the −6 dB (FWHM) and −20 dB beamwidths
of the PSFs for the different apodizations at all five ranges.
In Fig. 6 we see that the CLS apodization profiles main-
tain a relatively constant beamwidth with range compared
with the Nuttall and Hamming windows. The flat apodiza-
tion profile maintains a somewhat constant FWHM level
across range but deviates greatly with range at the −20 dB
level; whereas the CLS profiles remain relatively constant.

We also produced similar images for the CLS apodiza-
tion profiles using a design cyst radius of 0.6 mm in Fig. 7.
Again, the CLS apodization profiles maintain a relatively
constant mainlobe size across ranges compared to the
mainlobe spreading evident with the Hamming and Nut-
tall windows. The sidelobes of the CLS profiles are sup-
pressed at the 2.5 and 3 cm depths compared to Fig. 5.
The QCLS PSF exhibits a larger mainlobe with higher
sidelobes at 1 cm dynamic receive, a phenomenon due to
the algorithm maintaining constant energy of the PSF in-
side the cyst boundary. This effect is quantified in Fig. 8,
in which the QCLS profile exhibits the largest FWHM
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Fig. 6. Comparison of the −6 dB (FWHM) and −20 dB beamwidths of the PSFs for different apodization profiles with range on dynamic
receive. The CLS apodization profiles were designed using a cyst radius of 0.4 mm. The system had a transmit focus at 2 cm (f/2), then
was dynamically focused and apodized at ranges of 1 cm, 1.5 cm, 2 cm, 2.5 cm, and 3 cm (f/1). The FWHM and the −20 dB beamwidths
of the CLS PSFs remain stable in range. They also achieve the narrowest −20 dB beamwidths away from the transmit focus.

Fig. 7. Comparison of 2-D PSFs of different apodization profiles with
range on dynamic receive. The CLS profiles were designed using a
cyst radius of 0.6 mm. The system had a transmit focus at 2 cm
(f/2), then was dynamically focused and apodized at ranges of 1 cm,
1.5 cm, 2 cm, 2.5 cm, and 3 cm (f/1). Each image was normalized and
log compressed to −60 dB. Notice the greater sidelobe suppression
of the CLS profiles in the deeper ranges compared to Fig. 5.

at a range of 1 cm. Other than this anomaly, the CLS
apodization profiles exhibit a relatively constant FWHM
and −20 dB beamwidth across range.

C. Effects of Receive F/# on the CLS Apodization
Algorithms

The effect of f/# on receive was investigated to test the
robustness of the CLS apodization design algorithms. For
these simulations, we used the more aggressive 10 MHz ar-

ray using a fixed transmit focus at 2 cm (f/4) and dynamic
receive focusing and apodization. F/#’s ranging from f/0.5
to f/4 were used on receive, which varied the size of the
receive aperture. Therefore, CLS apodization profiles were
calculated for each receive aperture using a 0.6 mm de-
sign cyst radius. Fig. 9 shows the results of these simu-
lations. The data show three different f/#’s used (f/0.5,
f/2, and f/4) while dynamically receiving at 2.0 cm in
range. We also analyzed the CLS algorithms at 1.0 cm
and 3.0 cm in range, and they gave similar results. Panels
(a)–(c) in Fig. 9 show the contrast curves for the differ-
ent apodization profiles across a range of cyst radii. In
general, contrast improves for all windows with smaller
f/#’s. The CLS apodization profiles show modest contrast
gains (1 dB to 3 dB) relative to the flat, Hamming, and
Nuttall windows. The contrast improvements of the CLS
windows over the conventional windows increase with in-
creasing f/#. It is interesting to note that the Hamming
and Nuttall windows have worse cystic resolution than the
flat, LCLS, and QCLS windows at f/2 and f/4 across the
entire range of cyst radii. This is a phenomenon we did
not observe in the previous 6.5 MHz array simulations.
The Hamming and Nuttall windows increase the size of the
mainlobe in order to achieve sidelobe suppression. Further-
more, when analyzed with the cystic resolution metric, the
decrease in sidelobe energy of the Hamming and Nuttall
PSFs does not outweigh their relative increase in main-
lobe width. The CLS apodization profiles, on the other
hand, are able to maintain a narrow mainlobe width while
decreasing the energy in the sidelobe region. Hence, im-
proving cystic contrast. The second row of plots, (d)–(f),
in Fig. 9 show the mainlobe region of the CLS integrated
beamplots. The dotted line is the boundary of the design
cyst radius of 0.6 mm. We see very little difference be-



352 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 54, no. 2, february 2007

Fig. 8. Comparison of the −6 dB (FWHM) and −20 dB beamwidths of the PSFs for different apodization profiles with range on dynamic
receive. The CLS apodization profiles were designed using a cyst radius of 0.6 mm. The system had a transmit focus at 2 cm (f/2), then was
dynamically focused and apodized at ranges of 1 cm, 1.5 cm, 2 cm, 2.5 cm, and 3 cm (f/1). Notice the large FWHM of the QCLS algorithm
compared to Fig. 6 at a range of 1 cm, a phenomenon due to the algorithm’s attempt to maintain constant energy of the PSF inside the
mainlobe region.

tween the two mainlobes, with the QCLS mainlobe a bit
wider than the LCLS mainlobe. The third row of plots in
Fig. 9 shows the weights of the CLS apodizations across
the aperture. For the lower f/#’s, the difference between
the CLS windows are greater.

Changing the f/# on receive did not produce results
that we intuitively expected. We assumed that operating
the CLS algorithms with smaller f/#’s or larger apertures
would yield markedly better contrast curves than the con-
ventional windows. Even though the CLS algorithms had
more information to use in potentially achieving smaller
sidelobe levels, the synthetic responses simply could not
be summed together at that instant in time in order to
destructively interfere. Ultimately, the algorithms still are
governed by diffraction. Although large gains in contrast
were not achieved with smaller f/#’s, the LCLS and QCLS
profiles did achieve improved contrast (2 dB to 4 dB) com-
pared to the conventional windows at the f/#’s investi-
gated. Note that increasing the receive aperture size with
range, a method typically used to maintain a constant f/#
and improve DOF, is not entirely necessary with the CLS
algorithms. It may be possible to use a fixed number of
elements in the receive aperture at all ranges and let the
algorithms control beam size. This is a method we are cur-
rently investigating.

D. Effects of Sound Speed Errors on the CLS Apodization
Algorithms

In our final set of simulations, we investigated the sensi-
tivity of the CLS apodization design algorithms to errors
in the assumed speed of acoustic wave propagation. We
performed these simulations using the 6.5 MHz array with
a transmit focus at 2.0 cm (f/2) and a receive focus at

2.0 cm (f/1). For these simulations, the system always as-
sumed a sound speed of 1545 m/s. Therefore, even when
the propagation speed varied, the system never changed
the transmit and receive focal delays. For all the simula-
tions, the receive apodization applied was always the CLS
apodization profile computed for the 1545 m/s PSF dy-
namically focused at 2.0 cm and with a design cyst radius
of 0.6 mm. Fig. 10 shows the contrast curves (left) and inte-
grated lateral beamplots (right) for the CLS apodizations
with the correct sound speed in the medium of 1545 m/s.
Fig. 10 should be used as a reference for the simulation
results presented in Figs. 11 and 12. We obtained PSFs
when the speed of sound was overestimated by 1%, 3%,
and 5%, then underestimated by 1%, 3%, and 5%. Because
the system always assumed a sound speed of 1545 m/s, the
different propagation speeds shifted the PSFs in range. In
order to be consistent when applying the cystic resolution
metric, the cyst was shifted in range so that it was always
centered on the degraded PSF. Fig. 11 shows the results
for the simulations when the assumed speed of sound was
overestimated, meaning that the true propagation speed
through the medium was less than 1545 m/s. The first row
of plots, (a)–(c), in Fig. 11 shows the contrast curves that
were computed with the cyst centered on the shifted PSF.
The Hamming, LCLS, and QCLS curves are similar for
the 5%, 3%, and 1% overestimation. The Nuttall window
interestingly achieves the best contrast at all cyst radii for
the 5% overestimation simulation, but it is the worst in the
0.1–0.5 mm cyst radii range in the 1% overestimation. The
second row of plots in Fig. 11 shows the mainlobe region
of the integrated lateral beamplots for the CLS apodized
PSFs. Panels (g)–(i) in Fig. 11 show the entire lateral ex-
tent of the integrated beamplots in which differences in
the grating lobes for the CLS apodized PSFs can be seen.
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(d) (e) (f)
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Fig. 9. Comparison of apodization profiles at different f/#’s on receive (f/0.5, f/2, and f/4). These simulations use the 10 MHz linear array
with fixed transmit focus at 2 cm (f/4) and dynamic receive at 2 cm. Panels (a)–(c) show contrast curves for the different apodization
schemes (flat, Hamming, Nuttall, LCLS, and QCLS). Panels (d)–(f) show the integrated beamplots of the CLS profiles in which the dotted
line corresponds to the cyst boundary used to design the windows. Panels (g)–(i) show the magnitude of the CLS profiles across the aperture.
The CLS algorithms produce better contrast at every cyst size than the Hamming and Nuttall windows for the f/2 and f/4 apertures.

We also investigated the effect of underestimating the
sound speed by 1%, 3%, and 5%, meaning that the true
propagation speed through the medium was greater than
1545 m/s. These results are shown in Fig. 12. Plots (a)–
(c) in Fig. 12 show the contrast curves computed with the
cyst centered on the shifted PSF. The Hamming, LCLS,
and QCLS curves are similar for the 5%, 3%, and 1% un-
derestimation. The Nuttall window again achieves the best
contrast for all cyst sizes in the 5% underestimation simu-
lation. The second row of plots in Fig. 12 shows the main-
lobe region of the integrated lateral beamplots for the CLS
apodized PSFs. Plots (g)–(i) in Fig. 12 show the entire
lateral extent of the integrated beamplots in which dif-
ferences in the grating lobes for the CLS apodized PSFs

can be seen. These results closely match those from the
overestimated speed of sound simulations in Fig. 11.

The design radius for the speed of sound simulations
was 0.6 mm. In order to be thorough, we present re-
sults showing how the contrast curves change when we ap-
ply CLS apodizations designed over a range of cyst radii
(0.4 mm–1.0 mm). We show results for two simulations,
one in which the sound speed was underestimated by 1%
and another in which we have grossly overestimated the
sound speed by 5%.

The contrast curves for the underestimated sound speed
are shown in Fig. 13. The effects of design radius for the
LCLS profiles are shown in the left panel of Fig. 13. The
corresponding QCLS profiles are plotted on the right. The
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Fig. 10. Contrast curves (left) and integrated lateral beamplots (right) for the CLS apodizations designed assuming the correct speed of
sound (1545 m/s). The dotted vertical lines delineate the design cyst radius of 0.6 mm. The LCLS and QCLS windows produced similar
beamplots.

flat apodization contrast curve is plotted for reference in
both plots. The QCLS contrast curves show more variabil-
ity with design radius in which larger design radii achieve
better contrast for larger cysts; but smaller design radii
achieve better contrast for smaller cysts. The contrast
curves corresponding to changing design radii with a 5%
overestimation in speed of sound are shown in Fig. 14. The
LCLS curves are shown on the left and QCLS curves are
shown on the right. Both plots depict the flat apodization
contrast curve for reference. In general, the curves designed
with the smaller radii result in worse cystic contrast. The
QCLS algorithm has a greater variability in achieved con-
trast than the LCLS algorithm. It should be noted that the
CLS apodization profiles achieve better contrast at all cyst
sizes compared with the flat apodization contrast curve.

These simulations address the concerns that the vari-
ation of sound speed in human tissues will degrade the
CLS profiles. We have shown that the CLS algorithms re-
main relatively stable in the presence of wave propagation
speed errors, but ultimately these results must be tested
experimentally.

IV. Discussion

Our simulations demonstrate the use of our novel strate-
gies for designing optimal apodization profiles. In our
methods, we collect spatial impulse responses at the in-
stant in time corresponding to the dynamic receive focus.
We produce weights that minimize the energy of the spa-
tial point spread function outside a selected radius from
the mainlobe peak. This minimization is subject to a con-
straint that either forces unity amplitude gain at the peak
of the response (LCLS method) or maintains constant en-
ergy of the PSF inside the circular region defined by the
selected radius (QCLS method). The LCLS approach in
general yields a narrow mainlobe and low sidelobe lev-
els. Although such narrow mainlobes are attractive for
point imaging, they may not be optimal for imaging dif-
fuse legions and low echogenicity cysts. In these cases, the

QCLS approach that yields a slightly broader mainlobe
and slightly higher sidelobe levels may be desirable.

Although the LCLS and QCLS apodization design
methods have been validated theoretically and through
computer simulations, we must begin to assess their per-
formance experimentally. Initial results are positive and
suggest that the technique is quite robust; however, full as-
sessment with an experimental scanner will be necessary to
fully prove their efficacy. We are currently designing such
experiments, and collecting the entire data set of single
channel receive spatial impulse responses is a challenging
task. We will need to account for spatial variance of the
PSF in the lateral dimension as well as in range. Once
we have fully characterized the spatial impulse response of
the system, we will be able to produce CLS apodization
profiles for each output image pixel, make data reconstruc-
tion seamless and rapid, and assess the performance of our
algorithms to produce optimal contrast.

Obviously, the CLS apodization design algorithms can
be realistically used only in a conventional system by
choosing a specific design radius. Although the cystic res-
olution metric can be used to decide which profile can
achieve the best contrast for a given application (i.e., imag-
ing a cyst with a 0.4 mm radius or achieving −15 dB
contrast for cysts ranging from 0.2 mm to 2.0 mm), the
definitive optimal CLS profile is difficult to determine. We
have found empirically that choosing the profile around
the point at which the contrast curve begins to level off re-
sults in the best contrast for the entire range of cyst sizes.
Typically, the apodization profiles at the extreme ends of
the design cyst radius range exhibit more erratic behavior,
like the multiple mainlobe phenomenon in the QCLS case
with the large design cyst radii or the large sidelobes in
the minimum beamwidth LCLS case in Fig. 1. Ideally, a
library of CLS profiles could be constructed and specific
profiles applied, depending on the imaging application. A
peripheral vasculature exam in which contrast for larger
voids would be important might use a profile designed for
larger cysts while breast imaging, in which finer detail is
critical might use a profile designed for a smaller cyst.



guenther and walker: medical ultrasound using cls, part ii, simulation results 355

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11. Effect of assumed sound speed on the CLS algorithm. For these simulations, the wave propagation speed was overestimated by 1%,
3%, and 5%. The CLS profiles computed for 1545 m/s were applied to the degraded PSFs. Panels (a)–(c) show the resulting contrast curves.
The Hamming, LCLS, and QCLS contrast curves are similar at the different sound speeds. Panels (d)–(f) plot the mainlobe region of the
CLS apodized PSFs in which the dotted line delineates the design radius of 0.6 mm. The entire lateral extent of the integrated beamplots
for the CLS apodized PSFs are shown in (g)–(i). The CLS algorithms remain quite stable for the sound speed errors investigated, in which
the worst cystic contrast is for the simulation corresponding to the grossest sound speed error of 5%. It is interesting to note that the
Nuttall window, which performs the worst at the correct speed of sound (Fig. 10), outperforms all other windows for the 5% overestimation
simulation.

It is important to note that our contrast analysis is for a
specific instant in time, when the PSF is centered directly
in the middle of the cyst. For the speed of sound simu-
lations in which errors in the assumed wave propagation
speed shift the PSF in range, we still calculate contrast
with the PSF centered on the cyst. Furthermore, the con-
trast resolution metric describes the point contrast of an
image, not the overall contrast of the cyst. Overall cystic
contrast analysis requires taking a B-mode image of a cyst,
integrating the intensities over the lesion, and comparing
this to the integrated intensity over a region of background
speckle of the same size at the same depth [19], [20]. Ex-

tending the contrast resolution metric to incorporate over-
all cystic contrast is an area of ongoing research.

Results presented in this paper show that the CLS al-
gorithms for apodization design outperform conventional
windows such as the Hamming, Nuttall, and flat apodiza-
tions across a range of imaging scenarios and system pa-
rameters. The contrast curve results must be interpreted
with caution because the resolution metric used to com-
pute the cystic contrast is a point contrast value not the
contrast of the overall anechoic region compared to the
background speckle. We intend to perform human observer
studies that will further investigate the use of the CLS
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 12. Effect of assumed sound speed on the CLS algorithm. For these simulations, the wave propagation speed was underestimated by
1%, 3%, and 5%. The CLS profiles computed for 1545 m/s were applied to the degraded PSFs. Panels (a)–(c) show the resulting contrast
curves. The Hamming, LCLS, and QCLS contrast curves are similar at the different sound speeds. Panels (d)–(f) show the mainlobe region
of the CLS apodized PSFs in which the dotted line delineates the design radius of 0.6 mm. The entire lateral extent of the integrated
beamplots for the CLS apodized PSFs is shown in (g)–(i). The CLS algorithms remain quite stable for the sound speed errors investigated.
These results closely resemble those seen for the overestimated sound speeds in Fig. 11.

apodization profiles for optimal cystic contrast and, based
on the simulation results presented, we believe that the
CLS windows will meet our expectations. Overall the CLS
apodization design technique has the potential to improve
contrast of anechoic legions but also improve beamforming
in general due to the formation of PSFs that have narrower
mainlobes and lower sidelobes than the conventional win-
dows. There also exists the potential for the technique to
aid in the design of system responses used for hyperther-
mia applications and Doppler signal processing. In order
for our technique to be implemented on a clinical system,
adequate characterization of the system is required, in-
cluding the shift variance of the PSF. However, once the
system has been characterized, our algorithms save a great
deal of time by obviating iterative design.

V. Conclusions

The CLS array pattern synthesis technique presented
in this paper has been shown to be effective in designing
apodization profiles that can improve contrast in ultra-
sound images. The LCLS approach achieved a 2-D spa-
tial impulse response with a narrower mainlobe and lower
sidelobes than conventional windows currently used to re-
duce clutter. In cases in which imaging cysts or anechoic
regions are of importance and a wider mainlobe may im-
prove cystic resolution, the QCLS technique can be used
for improved contrast. We have shown that our algorithms
are stable across imaging scenarios such as dynamic re-
ceive focusing, varying f/#, and different transmit frequen-
cies. The LCLS and QCLS algorithms also improved DOF
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Fig. 13. Effect of design cyst radius when the assumed sound speed has been underestimated by 1%. The LCLS (left) and QCLS (right)
apodization profiles were designed for 0.4 mm, 0.6 mm, 0.8 mm, and 1.0 mm cyst radii. The flat apodization contrast curve is shown for
reference. The CLS profiles achieve better contrast than flat apodization across a wide range of cyst sizes. The LCLS and QCLS contrast
curves remain stable in the presence of sound speed errors. The QCLS curves in general decrease contrast for the smaller cyst sizes as the
design cyst radius increases.

Fig. 14. Effect of design cyst radius when the assumed sound speed has been grossly overestimated by 5%. The LCLS (left) and QCLS
(right) apodization profiles were designed for 0.4 mm, 0.6 mm, 0.8 mm, and 1.0 mm cyst radii. The flat apodization contrast curve is shown
for reference. The LCLS and QCLS contrast curves produce better contrast than the flat apodization at all cyst sizes. In general, contrast
improves for larger design cyst radii.

by maintaining relatively constant beamwidths through
range. In cases in which the wave propagation speed is
different than the assumed sound speed, the algorithms
remain stable and still can improve contrast. Simulation
results obtained by implementing the CLS algorithms
demonstrate the success of the technique in solving com-
mon problems associated with ultrasound imaging, such
as a restricted depth of field.

The CLS apodization design algorithms have significant
potential to improve ultrasound beamforming and can be
applied in any ultrasound application in which the sys-
tem response is well characterized. There is no iteration
involved in producing the apodization profiles; therefore,
design time is considerably reduced as compared to other
optimal apodization design techniques. Further investiga-
tion is required to examine the effects of phase aberration,
blocked elements, shift variance of the system response,

and overall cystic contrast. However, our simulations indi-
cate that the CLS techniques improve cystic resolution and
consistently outperform current conventional apodization
profiles.
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A Novel Method for Designing and Fabricating Single Piston Transducers with 
Extended Depth of Field.
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Abstract: Motivation/Background:
Gabor zone plate lenses offer adequate focusing performance at a lower cost, and 
also have the potential to operate successfully beyond the upper frequency range 
of current annular arrays and single piston transducers. Zone plates achieve a 
focus varying the transmittance across a flat lens. Although it is difficult to apply a 
continuously varying transmittance across a transducer, it is possible to mimic this 
using a high-resolution binary micropattern for easier manufacturing. We propose 
that binary micropatterning one of the electrodes on a PVDF transducer can be 
used to produce low-cost focused transducers capable of operating up to very high 
frequencies.
Statement of the Contribution/Methods:
These lenses suffer from two main limitations. Firstly focusing is based on single-
frequency excitation, and so varies with frequency. Secondly, for a real and non-
negative transmittance, the ideal focused image must be accompanied by a 
conjugate phase (virtual) image, and the image of a plane wave at the transducer 
face. Interference between the three images seriously degrades focusing. To 
lessen this effect we have developed an alternating projection algorithm whereby 
the desired radiation pattern is projected onto a feasible transducer pattern, and 
then in turn this pattern is projected onto a new radiation pattern, which is restricted 
to meet a set of predefined response magnitude constraints before continuing. This 
method iteratively modifies the transducer pattern so that the sum of the three 
images tries to meet the constraints, which can include both frequency and spatial 
responses.
Results/Discussion:
The described algorithm consistently improves zone plate lens results. In the 
simplest case of a simulated linear patterned transducer (figure), where the desired 
radiation pattern is uniform in a central region and zero outside, the algorithm gives 
~14dB less energy in the stopband compared to a non-optimized zone plate, and 
~10dB less when compared to an apodized zone plate. Further results show that 
when more than one frequency or focal distance is given in the constraints, the 
method continues to perform well. We make micropatterned transducers using a 
PCB as one electrode, and half-metallized PVDF. Beamplots and details of higher 
resolution patterning to follow at the conference.



Diffuse Targets for Improved Contrast in Beamforming Adapted 
to Target
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I. Motivation
In medical ultrasound, bright off-axis targets can introduce broad image clutter, which 

reduces the both image contrast and resolution.  Such image degradation can make clinical 
diagnoses of small features, such as breast calcifications, very difficult.  Recently, we have 
developed an  adaptive beamforming (BF)  algorithm, entitled TONE, that  significantly 
increases both image contrast and resolution by conducting a global optimization based on 
a sparse set of hypothetical source locations.  Based on the electronic signal to noise ratio 
and the location of the targets with respect to the hypothetical sources, this optimization 
can often creates clouds around the target in the final image, reducing the effective image 
contrast.  Here we have developed a method to reduce the appearance of the clouds and 
further enhance the image contrast and resolution with no change in the time required to 
beamform.

II. Methods
In this paper,  we alter the system model from a grid of single hypothetical source 

locations to a grid in which each hypothetical location is the weighted sum of many sources 
in  the  surrounding region.   This  diffuse grid  encourages TONE to  place hypothetical 
sources in the immediate vicinity of the true source, rather than in a large cloud around that 
source.  The result is a reduction in the appearance of such clouds, further increasing image 
contrast and resolution.  Because the grid of hypothetical sources has not changed in size, 
there is no change in the computation time, making this system model even more attractive.

We have performed a series of simulations using FIELD II to test the performance of 
this  modification as compared to the original TONE and conventional BF.   Two point 
targets were placed with a 100um lateral separation.  Data was simulated for a 33 element 
aperture with a 300um pitch, transmitting at 5MHz with 80% bandwidth.  Hypothetical 
sources were placed every 40um laterally and every 20um axially.  All BFs were evaluated 
for both noise-free data and data with 15dB per-channel-SNR.

We have also performed a series of experiments using a Philips SONOS 5500 (6MHz 
with 80% bandwidth) to further test the performance of this modification.  Conventional 
BF was applied using the default parameters of the Philips scanner, whereas SPOC was 
applied on single-channel, unfocused data with plane wave transmit. Hypothetical sources 
were placed every 67um laterally and 20um axially.  Five 20um wires were imaged in a 
water tank and the result are shown in Fig. 1.

III. Results and Discussion
The results of both the simulations and experiments show a significant reduction in the 

image clouds in the case of the diffuse target model.



Supported by the US Army CDMRP in Breast Cancer grant No. W81XWH-04-1-0590.



Optimal Contrast Resolution Beamforming 
Drake A. Guenther1 and William F. Walker1, 2 

 
1Biomedical Engineering, University of Virginia, Charlottesville, VA 22908 

2 Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904 
 

ABSTRACT 
 
I. Motivation and Background 

The delay-and-sum (DAS) beamformer, utilized in current state of the art 
ultrasound imaging systems, delays each receive channel to focus the returning echoes 
and weights each receive channel prior to beam summation.  Delays and apodization are 
applied dynamically to focus and maintain a constant f/# with range.  Apodization 
functions like the Hamming window shape the overall system impulse response (PSF) by 
altering the sidelobe levels and mainlobe width.  As a result, apodization greatly impacts 
the contrast and resolution of the final output image.  Adding to the rich history of array 
pattern synthesis, we describe an optimal contrast resolution beamformer for broadband 
imaging systems. 
 
II. Statement of Contribution/Methods  

This paper describes a novel receive beamformer architecture that replaces the 
weight on each channel of the DAS beamformer with channel-unique finite impulse 
response (FIR) filters.  Our proposed FIR beamformer passes the focused receive signals 
through multi-tap FIR filters on each receive channel prior to summation.  The FIR filters 
are constructed to maximize the contrast resolution of the system’s PSF using an array 
pattern synthesis technique that utilizes a priori knowledge about the imaging system.  
We thoroughly investigate the contrast resolution performance of the DAS and FIR 
beamformers through simulations and phantom experiments.   

 
III. Results/Discussion 

We present simulation results showing that FIR filters of modest tap lengths (3-7) 
can yield marked improvement in image contrast and point resolution.  Specifically we 
show that 7-tap FIR filters can reduce sidelobe and grating lobe energy by 30dB and 
improve contrast resolution by as much as 20dB compared to the DAS beamformer.  We 
investigate the potential effects of phase aberration on the FIR beamformer by simulating 
a nearfield thin phase screen aberrator.  In the presence of aberrators characterized by a 
root-mean-square strength of 28 ns and a full-width at half-maximum correlation length 
of 3.6 mm the FIR beamformer still outperforms the conventional DAS beamformer’s 
contrast resolution by as much as 15 dB.   

We show experimental results wherein FIR filters are used to synthesize 2D 
spatial PSFs on an Ultrasonix Sonix RP scanner (Ultrasonix Medical Corp., Richmond, 
BC, Canada).  The resulting 2D PSFs have low sidelobes while achieving a narrow 
mainlobe.  Using these experimental PSFs we present results where the FIR beamformer 
improves the contrast to noise ratio in simulated B-mode cyst images by more than 4 dB.   

Our array pattern synthesis algorithm and novel FIR beamformer have the 
potential to significantly improve broadband imaging systems in any application where 



the system response is well characterized.  The FIR beamformer improves the contrast 
resolution of ultrasound images and initial results suggest that the beamformer is robust 
to phase aberration.  Therefore, we believe the FIR beamformer will considerably 
enhance diagnostic ultrasound.  
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ABSTRACT 
 
Aperture weighting functions are critical design parameters in the development of ultrasound systems 

because beam characteristics determine the contrast and point resolution of the final image.  In previous work by 
our group, we developed a general apodization design method that optimizes a broadband imaging system's 
contrast resolution performance [1, 2].  In that algorithm we used constrained least squares (CLS) techniques and 
a linear algebra formulation of the system point spread function (PSF) as a function of the scalar aperture 
weights.  In this work we replace the receive aperture weights with individual channel finite impulse response 
(FIR) filters to produce PSFs with narrower mainlobe widths and lower sidelobe levels compared to PSFs 
produced with conventional apodization functions.  Our approach minimizes the energy of the PSF outside a 
defined boundary while imposing a quadratic constraint on the energy of the PSF inside the boundary.   

We present simulation results showing that FIR filters of modest tap lengths (3-7) can yield marked 
improvement in image contrast and point resolution.  Specifically we show results that 7-tap FIR filters can 
reduce sidelobe and grating lobe energy by 30dB and improve cystic contrast [3] by as much as 20dB compared to 
conventional apodization profiles.  We also show experimental results where multi-tap FIR filters decrease 
sidelobe energy in the resulting 2D PSF and maintain a narrow mainlobe.  Our algorithm has the potential to 
significantly improve ultrasound beamforming in any application where the system response is well 
characterized.  Furthermore, this algorithm can be used to increase contrast and resolution in novel receive only 
beamforming systems [4, 5].  
Keywords – beamforming, contrast resolution, constrained least squares 

    
 

I. INTRODUCTION 
In conventional ultrasound systems, apodization is applied to individual receive channels after dynamic 

focusing but before channel summation.  These weights can be applied dynamically to control f/# with range and to 
suppress edge effects resulting from a finite aperture size. Conventional apodization functions, like the rectangular, 
Hamming, or Nuttall [6] window, typically offer a tradeoff between the system spatial impulse response’s mainlobe 
width and sidelobe level.  Thus, apodization greatly affects the contrast and resolution of the final image.  In previous 
work by our group we proposed an apodization design algorithm that optimized the system’s contrast resolution [1, 2].  
Performance was quantified using a “cystic resolution” metric where contrast is measured as a function of cyst size.  
Although other resolution metrics exist, like the full width at half maximum (FWHM) of the system’s beamplot, we 
consider cystic resolution a more appropriate performance metric for ultrasound systems [3].  Our previous apodization 
design algorithm, formulated using constrained least squares, produced PSFs with narrower mainlobes and smaller 
sidelobes than the PSFs formed using conventional apodization profiles.  According to the cystic resolution metric, the 
least squares apodization profiles improved contrast resolution by 2-3dB. 

In this paper we investigate applying dynamic receive apodization with individual receive channel multi-tap FIR 
filters.  A simplified depiction of a conventional receive beamformer and the proposed FIR beamformer is shown in 
figure 1.  Note that apodization is applied in both architectures after the dynamic focal delays have been applied.  The 
proposed FIR filter beamformer increases system complexity, but should be relatively easy and inexpensive to 
implement using modern hardware.  Some novel ultrasound systems employ receive only beamforming.  For example 
the system described in [4] focuses only on receive to maintain high frame rates for elasticity imaging, and opto-acoustic 
imaging devices use the ultrasound transducer purely as a receiver [5].  Our beamforming algorithm can be readily 
applied to these systems, and offers the potential to significantly improve point resolution and contrast of the output 
images.  Our previous design method optimized the apodization weights of the conventional beamformer to maximize 
contrast resolution.  In this paper we extend that algorithm to calculate the optimal weights for the FIR beamformer 
utilizing the same performance metric.    



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Receive beamformer architectures: (top) Conventional (bottom) Proposed.  The architecture depicted on the bottom shows the 
proposed beamformer with 5-tap FIR filters.  Note that apodization is applied after dynamic receive focusing in both architectures.   

 

II. THEORY 
A. Linear algebra formulation of the spatial point spread function 

The sensitivity field for a transducer during pulse-echo imaging can be expressed as the product of a 
propagation matrix, S, and a set of aperture weightings, w.  The propagation matrix uses superposition to describe the 
contribution of each transducer element at each field point at an instant in time.  For our formulation, S is a function of 
the transmit aperture weights, the excitation pulse, and the individual element impulse responses of the transmit and 
receive apertures.  We also apply dynamic receive focusing in our formulation by adjusting the receive delays of each 
individual element.      

The two way pulse echo propagation matrix, S, for a fixed transmit aperture and a n element dynamically 
focused receive aperture at a total number of p points in three dimensional space is:  
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where si,j is the contribution of the jth receive element at the ith point in space.  The receive aperture weighting 
function, w , for each of the n elements used on receive can be written in vector form as: 
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where T denotes the vector transpose operation.  Using (1) and (2), we can now write the complete two-way pulse echo 
system PSF, P , as follows: 

SwP = ,                 (3) 

the propagation matrix multiplied by the receive weighting vector.  Note that this results in the one dimensional column 
vector, P , of length p the total number of points in three dimensional space where the system PSF is measured.   

To expand our formulation to include receive channel FIR filters, we recognize that the final spatial PSF is a 
linear superposition of multiple dynamically focused 2-way PSFs.  We create a new propagation matrix, SFIR , which is a 
simple combination of the propagation matrices associated with each dynamic receive focus.  The number of propagation 
matrices included corresponds to number of FIR filter taps, k. 
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where szk,i,j is the contribution of the jth element at the ith point in space for the kth receive focus.  Adequate spatial and 
temporal sampling of the three dimensional PSF yields huge propagation matrices, and therefore for this paper we have 
limited our analysis to two spatial dimensions, azimuth and range, and assume a temporal sampling rate of 40MHz for 
the FIR filters.  The receive FIR filter taps, FIRw  , can also be written in vector form as: 

[ ]TnzkzkzkzknzzzzFIR wwwwwwwww ,3,2,1,,13,12,11,1 LLL= ,                                     (5) 

where jzkw ,  is the weight applied for the kth receive focus on the jth receive element.  Using (4) and (5), the complete 
two-way pulse echo system PSF for the receive channel FIR beamformer using k-taps on each channel is written as 
follows: 

FIRFIRFIR wSP =   .                                                                                                         (6) 

 
B. Algorithm for computing the FIR filter taps 

The cystic resolution metric described in [7] quantifies the contrast at the center of an anechoic cyst embedded 
in a speckle generating background.  Note that this metric measures contrast at a specific point in space (the center of the 
cyst) at an instant in time.  This is a different parameter than overall cystic contrast that is typically computed from a B-
mode image [8].  We refer to the cystic resolution metric’s result as a “point contrast” to avoid this confusion.  From [7] 
the point contrast of the center of a cyst relative to the background neglecting electronic noise is defined as: 

tot

out

E
E

C =  ,        (7) 

where outE  is the PSF energy outside the cyst and totE  is the total PSF energy.  The contrast resolution metric identifies 
the contribution of specific points in the PSF to the overall contrast.  Note that if all of the PSF energy lay within the 
cyst, C would be 0, indicating the best possible contrast.  On the other hand, if most of the PSF energy lies outside the 
cyst, C approaches a value of 1.  Therefore, when we present contrast curves as a function of cyst radius, a more negative 
dB value indicates better performance.   

 The apodization design algorithm uses the above cystic resolution metric to formulate a least squares 
minimization problem with a quadratic constraint.  We call the resulting weights quadratically constrained least squares 
(QCLS) apodization profiles.  Our algorithm utilizes the linear algebraic representation of the PSF presented above.  If 
we describe the PSF for all spatial points in the final image, we can develop a full set of optimal dynamic receive 
aperture weights for the FIR receive beamformer in figure 1. 



 

 

 We can optimize contrast according to (7) by minimizing the ratio of PSF energy outside a specified cyst 
boundary to the total PSF energy.  This is equivalent to minimizing the ratio of PSF energy outside the cyst to PSF 
energy inside the cyst: 

2min wSoutw
     subject to the quadratic constraint  12 =wS in   ,                (8) 

where 
2•  denotes the square of the 2l -norm, outS  is the propagation matrix for all the spatial points of the PSF lying 

outside the cyst boundary, and inS is the propagation matrix for all the spatial points of the PSF lying inside the cyst 
boundary.  Note that the quadratic constraint minimizes the ratio of PSF energy outside the cyst to PSF energy inside the 
cyst.  Drawing upon [9], the optimal receive aperture weightings satisfying the quadratic constraint is the generalized 
eigenvector, eigw , corresponding to the minimum generalized eigenvalue resulting from the generalized eigenvalue 

decomposition problem of out
T
outSS  and in

T
inSS .  One of the main advantages of the QCLS technique is that no matrix 

inversion is required to solve for the optimal apodization profile.   

 
III. SIMULATION RESULTS 

We simulated a 64 element 1D linear array operating at 6.5MHz and 75% fractional bandwidth in DELFI [10], a 
custom ultrasound simulation tool.  Spatial PSFs were calculated in a 2D plane, azimuth and range, at different instances 
in time corresponding to particular dynamic receive foci.  We investigated the ability of our algorithm to produce 
optimal PSFs when using different size receive apertures, different FIR filter lengths, and different dynamic receive focal 
depths.  We investigated FIR tap lengths ranging from 1-tap to 7-taps.  We find that excellent performance can be 
achieved with a modest tap length.  In figure 2 we show results corresponding to a 64 element receive aperture 
dynamically focused at 1.0cm, 2.0cm (transmit focus), and 3.0cm.  The top figures plot the integrated lateral beamplots 
when using different apodization windows.  The beamplots were calculated by integrating the energy of the different 
spatial PSFs in range.  We compare our FIR-QCLS windows against conventional windows such as the rectangular, the 
Hamming, and the Nuttall windows.  We only show results comparing the QCLS windows with the rectangular window 
since the results for the other conventional windows were similar.  We calculated FIR-QCLS windows using a design 
cyst radius of 0.4mm with 1-tap, 3-taps, 5-taps, and 7-taps per channel.  Notice the marked reduction of the sidelobe 
levels for the higher tap FIR-QCLS weights.  Some lateral beamplots show sidelobe level reduction of 30dB compared to 
the rectangular beamplot.  The second row of plots in figure 2 show the contrast curves computed from (7) as a function 
of cyst radius (from 0.1mm to 1.0mm) with the PSF centered in the middle of the cyst.  In general contrast improves 
when increasing the number of taps on each receive channel, however the biggest contrast improvement occurs between 
using 3-taps versus 1-tap.  The FIR-QCLS windows show cystic resolution improvements greater than 10dB for a wide 
range of cyst sizes.  The FIR-QCLS weights computed for the 1.0cm dynamically focused data actually show contrast 
improvements of 15dB over the conventional windows for cysts larger than 0.4mm.  In general we see similar trends at 
all three dynamic receive focal depths.  The gains in contrast improvement decrease at ranges deeper than the transmit 
focus.  

 Figure 3 shows the calculated FIR-QCLS weights for the data dynamically focused at 2.0cm.  These weights 
were computed for a design cyst radius of 0.4mm.  The 1-tap and 3-tap FIR-QCLS weights are mostly smooth Gaussian 
like functions across the aperture, except at the endpoints where discontinuities appear.  The 5-tap and 7-tap weights are 
much more variant and discontinuous.  It is interesting to note that the FIR-QCLS weights take on negative values, a 
phenomenon never seen in conventional windows like the Hamming or Nuttall window.  In general, the results using 
smaller receive apertures (48 and 32 elements) showed similar trends to the 64 element aperture and are not included.         
  
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Integrated lateral beamplots and cystic contrast curves comparing different apodization functions at different dynamic receive 
depths (Tx focus at 2.0cm).  FIR-QCLS weights were calculated for 1-tap, 3-tap, 5-tap, and 7-tap FIR filters with a design cyst radius 
of 0.4mm.  Notice the large reduction in sidelobe and grating lobe levels for the higher tap filters.  The bottom row of plots shows 
cystic contrast curves as a function of cyst radius for the same apodization functions.  Cystic contrast is improved by more than -20dB 
for the higher tap FIR filters at dynamic receive depths of 1.0 and 2.0cm.  In general longer tap filters improve contrast resolution. 

 
 
 
 
 
 

 

 

 

 
Fig. 3.  FIR-QCLS weights for the multi-tap filters.  These weights correspond to the dynamic receive at 2.0cm results in figure 2.  
The 1-tap and 3-tap weights are smooth across the receive aperture, showing some discontinuities at the edges.  The 5-tap and 7-tap 
filters are more variant across the receive aperture.  Notice that some weights take on negative amplitudes. 

 

IV. EXPERIMENTAL RESULTS 
We investigated the ability of our algorithm and novel receive beamformer architecture to improve the spatial 

PSF characteristics of an Ultrasonix Sonix RP ultrasound scanner (Ultrasonix Medical Corp., Burnaby, BC, Canada).  
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The Sonix RP system has a software development kit (SDK) named TEXO that enables low level scanner control with 
the ability to acquire single channel RF data sampled at 40MHz with 12bit precision.  We have also created a Python™ 
programming language interface to the TEXO SDK that allows us to create customized pulse sequences without the need 
to recompile the system C code.  Utilizing our Python™ interface with the TEXO SDK we can acquire a full set of 
synthetic receive aperture data from a 64 element transmit aperture and 64 element receive aperture in fractions of a 
second.  In order to generate the 2D PSF required for our algorithm, we imaged a 20µm steel wire in a tank full of 
deionized water.  We electronically scanned the transmit aperture across the array as well as mechanically moved the 
array using a 3-axis positioning system (Newport Motion Controller MM3000, Newport Co., Irvine, CA) in order to 
achieve azimuth spatial sampling of 75µm and axial spatial sampling of 50µm.  We acquired a 1.95cm (azimuth) by 
0.2cm (range) by 3000 time samples dataset to characterize the 3D spatio-temporal PSF.  The entire experiment required 
29 hours to execute, resulting in over 10Gbytes of raw, averaged RF data.  The water temperature remained relatively 
constant over the course of the experiment between 21.6-22.4oC. 

 We used the L14-5 128 element linear probe excited with a 1 cycle 6.67MHz pulse for the experiment.  The 
transmit aperture consisted of 64 elements focused at 4.0cm in range (f/2).  We acquired 64 receive elements 
synthetically and averaged each receive signal 100 times to improve electronic SNR.  The receive data was also digitally 
bandpass filtered in MATLAB (The Mathworks, Inc., Natick, MA) with a 101st order bandpass filter with cutoff 
frequencies at 4 and 8MHz.  An experimental 2D spatial PSF was made by sampling the 3D spatio-temporal PSF for 
each receive element according to a dynamic receive profile for a particular receive focus.   

The log compressed envelope detected experimental 2D PSFs dynamically focused at 2.0cm using different 
conventional receive apodization functions are shown in figure 4.  Also shown are experimental 2D PSFs computed 
using 1-tap, 3-tap, 5-tap and 7-tap FIR-QCLS windows designed for a cyst radius of 0.35mm.  All images are log 
compressed to 60dB.  Notice the progressive reduction of PSF energy in the sidelobe regions when using the multi-tap 
FIR-QCLS design.  Figure 5 shows the integrated lateral beamplots and contrast curves for the experimental results.  The 
FIR-QCLS weights reduce sidelobe levels, lower the total PSF energy outside the mainlobe, as well as decrease 
mainlobe width.  Only the 1-tap and 7-tap QCLS plots are shown for clarity.  The contrast curves for the rectangular, 
Hamming, Nuttall, 1-tap QCLS and 7-tap QCLS experimental PSFs are shown in the right hand plot of figure 5.  The 
FIR-QCLS PSFs show increases in cystic resolution compared to the conventional windows.  Specifically, the 7-tap 
apodization profile improved contrast by 7dB compared to the Hamming window, by 10dB compared to the rectangular 
window, and by 12dB compared to the Nuttall window over a range of cyst sizes. 

 

V.  DISCUSSUION 
 This paper demonstrates a novel receive beamformer with multi-tap FIR filters on each receive channel; a 
system architecture not currently employed in medical ultrasound.  Schwann et al. suggested a similar type of 
architecture using linear phase FIR filters and also discussed the calculation of frequency dependent optimal receive 
apodization profiles.  Their simulation results showed contrast improvements, however, their multiple objective 
formulation required iterative procedures and made it difficult to determine an “optimal” apodization profile [11].  Our 
formulation on the other hand requires no iterations and produces optimal apodization profiles in a least squares sense 
that maximize cystic resolution.  Furthermore, the improvements in system performance using the FIR-QCLS windows 
are easily quantified using the contrast resolution metric. 

 The frequency response of the individual channel FIR filters is a concern because it could reduce SNR, negating 
the improvements in contrast resolution.  However, the results from our simulations and experiments do not indicate that 
the FIR-QCLS filters drastically change the spectra of the receive data.  If future results show that SNR is severely 
decreased, it may be possible to include an SNR constraint in our formulation, perform subband processing, or constrain 
the weights to be linear phase.  This is an area of future research. 

 Although we were able to produce successful experimental results to show the use of our novel beamforming 
strategy, they do not show the same large gains in contrast (15-20dB) and point resolution observed in the simulations.  
Possible causes for these shortcomings include: a limited element angular response on the array, poor single channel 
SNR, element nonuniformity, and hysteresis in our experimental setup.  All of these effects are detrimental to the FIR-
QCLS algorithm.  It would be nearly impossible to acquire the full spatio-temporal dataset needed to produce dynamic 
receive FIR-QCLS filters for every output image pixel with our given experimental setup.  Indeed, the QCLS 
apodization design algorithm requires thorough characterization of the system’s PSF.  We are currently researching 
methods to improve our characterization of the system without the need to physically acquire the full 4D spatio-temporal 



 

 

PSF.  If these solutions prove successful, we will be able to calculate the full set of receive filters, make data 
reconstruction seamless and rapid, and further assess the performance of our algorithm to produce optimal contrast. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  Experimental 2D PSFs with different receive apodization functions applied.  Each image is 0.2cm axially by 1.95cm laterally.  
All images were envelope detected and log compressed to 60dB.  The multi-tap FIR-QCLS apodization functions progressively reduce 
the total sidelobe energy while maintaining a tight mainlobe. 

 
 
 
 
 
 
 
 
 
 
Fig. 5.  Experimental integrated lateral beamplots (left) and contrast curves (right) with different receive apodization functions 
applied.  The Hamming and Nuttall windows achieve lower sidelobes than the rectangular apodization function but have a larger 
mainlobe.  The 1-tap QCLS apodization function achieves a tight mainlobe, but has a significant amount of energy in the sidelobe 
region.  The 7-tap QCLS apodization function achieves a tight mainlobe and dramatically reduces the amount of sidelobe energy.  The 
Hamming, Nuttall and 1-tap QCLS functions achieve worse contrast than the rectangular apodization function for small cyst sizes due 
to their mainlobe widths.  The 1-tap QCLS apodization function is outperformed by the Hamming and Nuttall windows at larger cyst 
sizes.  The 7-tap FIR-QCLS apodization function improves cystic resolution by more than 7dB for a range of cyst sizes and achieves 
the best contrast at every cyst size investigated. 
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VI. CONCLUSION 

 The FIR-QCLS receive beamformer presented in this paper enhances the contrast resolution of ultrasound 
images.  The 2D spatial PSFs produced in experiments and simulations show lower sidelobe levels and narrower 
mainlobes than PSFs produced with conventional apodization functions.  The algorithm appears stable across dynamic 
receive focal ranges and aperture sizes.  Further investigation is required to examine the effects of phase aberration, shift 
variance of the system response, varying frequency response of the individual channel filters, and determine 
implementation in a real system.  Results suggest that filters with as few as 7 taps can still offer large contrast 
improvements.  Furthermore the FIR-QCLS apodization profiles consistently outperform conventional apodization 
windows and offer significant gains in image quality with a modest increase in system complexity. 
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Abstract- For over fifty years adaptive beamforming (ABF)
algorithms have been applied in RADAR and SONAR signal
processing. These algorithms reduce the contribution of
undesired off-axis signals while maintaining a desired response
along a specific look direction. Typically, ABF achieves higher
resolution and contrast than conventional beamforming (CBF),
at the price of an increased computational load. In this paper we
describe a novel ABF designed for medical ultrasound, named
the Time-domain Optimized Near-field Estimator, or TONE. We
performed a series of simulations using ultrasound data to test
the performance of this algorithm and compare it to
conventional, data independent, delay and sum beamforming. We
also performed experiments using a Philips SONOS 5500. CBF
was applied using the default parameters of the Philips scanner,
whereas TONE was applied on single-channel, unfocused data
with plane wave transmit. TONE images were reconstructed at a
sampling of 67[tm laterally and 19[tm axially. The results
obtained for a series of 5 20tm wires in a water tank show a
significant improvement in spatial resolution when compared to
CBF. We also analyzed the performance of TONE as a function
of speed of sound errors and array sparsity, finding TONE
robust to both.

I. INTRODUCTION

Sensor arrays are used in many application fields including
RADAR, SONAR, geophysics, and medical imaging. For these
applications, the received data is often processed using the
conventional "delay-and-sum" beamforming. While this
approach is straightforward and easy to implement, off-axis
scatterers can introduce clutter, reducing the overall quality of
the beamformer output. The contribution of such clutter is
shown in figure 1. In panel A, an array of sensors is focused
along the dotted line and a single point target is placed in the
look direction, or on-axis, at a fixed distance from the array. As
energy is reflected toward the array, a signal is received by
each of the individual sensors. Focal delays are applied to each
signal to generate the sensor/range data set shown in the figure.
Summation across sensors to form an image line will amplify
the signal coming from the look direction. However, when a
secondary target is placed off-axis, as shown in panel B of
figure 1, it may lie within the array's beam and thus corrupt the
desired information. This is represented by the tilted
waveforms visible in the sensor/range data set. Although

This work was supported by the US Army Congressionally Directed
Medical Research Program in Breast Cancer grant No.W81XWH-04-1-0590

summation across sensors amplifies the signal coming from
directly in front of the array, it does not entirely eliminate the
contribution of the off-axis target. Finally, panel C of figure 1
depicts single channel echo data obtained from the thyroid of a
human subject at Duke University. At least three clear
waveforms are visible in this sensors/range data set. These non-
focal targets would appear in this image line as clutter,
reducing image contrast.

A Ser r Focusing Delavs

// _
B d Senors FuB ing D layn

C Sensrs Focusing Delays

N sensors

Figure 1. Panel A and B: schematic representation of the interference
problem with conventional beamforming. Panel C: in vivo single channel

thyroid data. The data clearly show the presence of bright off-axis scatterers as
evidenced by the tilted plane wave. Courtesy of G. E. Trahey.

The problem of nulling the contribution of off-axis targets
was first investigated for RADAR and SONAR systems by
extending the pioneering work of Norbert Wiener. The

1-4244-0785-0/06/$20.00 1543



application of Wiener filter theory to array signal processing
led to the initial development of adaptive beamforming [1-3].
In adaptive beamforming, the information associated with the
data received by an array of sensors is used to determine a set
of filter weights that optimize the beamformer output. In the
past fifty years, a plethora of algorithms have been developed,
each exploiting specific properties of the received data [2-3].
These algorithms are able to achieve resolution far superior to
that predicted by diffraction theory, while attaining excellent
side lobe reduction.

samples in the axial, or temporal, dimension and N is the
number of elements in the array. After the spatial responses for
all the hypothetical sources have been determined, these
responses are reshaped to form an array manifold matrix V of
dimensions NTxLP, where L and P are the numbers of
hypothetical sources in the range and lateral dimensions,
respectively. The observation model becomes:

x =Vf (1)

where x=[xl x2 ... XN]T is the data received by the N-element
array andf is the LPxl signal vector, whose elements are the
amplitudes of the hypothetical sources located in the ROI. x is a
NTxl vector that is obtained by concatenating the Txl channel
data xi. Given x and V, TONE operates on the received data x
and the array manifold matrix V to solve for the position and
intensity of the real sources (i.e., the vector]). For this purpose
we consider the joint probability density function (PDF) p(x,f.
The maximum likelihood estimate off is given by [5]:

f = argmaxf p(x,f) = argmaxf(p(x/f)p(f)) (2)

We assume that the marginal PDF p(/) is known a priori and
mathematically expressed as a zero-mean Gaussian
distribution. Furthermore, since (1) needs to be satisfied,
equation (2) reduces to the following [4]:

f = argmaxf p(f) (3)

t rRe htuldad G

Imnage Rewnslrucfion

Figure 2. Schematic representation of TONE beamforming.

While adaptive beamforming is often used in applications
involving narrowband signals in the far-field, current
techniques have not been proven successful in the case of
broadband signals originating in the near-field of the array.
This is the case of medical ultrasound. In this paper we present
an algorithm that is well suited for broadband signals generated
in the near-field. This algorithm is developed from the Spatial
Processing: Optimized and Constrained (SPOC) technique
originally described by Van Trees et al. for applications in
passive SONAR [4]. We term it Time-domain, Optimized,
Near-field Estimator, or TONE. TONE is particularly useful
since it does not require knowledge of second order statistics
and is therefore suitable to use with only a single realization of
data. Furthermore, it does not require any additional pre-
processing technique to be applied.

II. TONE BEAMFORMING

The imaging region, referred to as the region of interest
(ROI), is first subdivided into a collection of hypothetical
sources at arbitrary positions, as shown schematically in the top
panel of figure 2. Finer grid sampling yields finer final image
resolution but entails higher computational costs. For each
hypothetical source in the ROI, we determine (through
experiments, simulation, or theory) the signal received by the
array from target at that specific point (i.e., the spatial
responses). For every hypothetical source, the spatial response
is a matrix of dimensions TxN, where T is the number of

which is referred to as maximum a posteriori (MAP) estimate
of f By substituting the marginal PDF p(/) in (3) and
rearranging terms, the MAP problem becomes:

LP

argmaxf I-f subject to x = Vf (4)
1=1

wheref are elements off A solution for (4) is found using the
iterative procedure described in [4].
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Figure 3. Conventional delay-and-sum beamforming (left) and TONE
beamformed (right) of simulated point targets.
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III. SIMULATION METHODS AND RESULTS

A series of computer simulations were performed to
compare the performance of TONE to conventional delay-and-
sum beamforming. All calculations were performed in
MATLAB and utilized synthetic ultrasound signals.
Furthermore, for all the simulations presented here, the array
manifold matrix was obtained using the following procedure.
First, the response to a reference point was obtained. For every
hypothetical source, the reference response was then delayed
and re-interpolated (via cubic splines) according to the
geometrical delay profile corresponding to that specific source.

A. Point Targets
A series of point targets were distributed within a 4x5mm

region in range and azimuth, respectively. In this case, we
simulated a 33 element linear array operating at 5 Mhz with
150[pm element pitch. The final sampling frequency was set at
40 MHz. A plane wave was used on transmit for both the
conventional beamforming and TONE. Conventional
beamforming was applied on the received RF data using Hann
apodization and dynamic receive focusing. For TONE, we
discretized the image region in a series of hypothetical targets
separated 20[pm in range and 120[pm in azimuth. The positions
of the points were chosen so that some, but not all coincide
with the positions of the hypothetical targets. The results of this
set of simulations are presented in figure 3.

B. Anechoic Cyst
A 1mm radius anechoic cyst was placed in front of the

array and surrounded by roughly 4,000 scatterers randomly
distributed within the image region. Scatterers' amplitudes
followed a Gaussian distribution with zero mean and standard
deviation of one. Simulation methods are the same of those
described in the previous section, except that the hypothetical
source sampling was reduced to 100[pm in azimuth. Again, the
positions of the scatterers do not necessarily coincide with the
position of the hypothetical sources. The results are shown in
figure 4.

IV. EXPERIMENTAL METHODS AND RESULTS

Experiments were also performed using a Philips SONOS
5500 imaging system employing a 6MHz linear array. The
system was programmed to transmit on all elements
simultaneously as to mimic a plane wave. The received data
was obtained by stepping sequentially through the 128 receive
channels. Received data was filtered using a 100 taps FIR filter
with pass-band between 3 and 11Mhz. TONE was then applied
on a 32-processor SGI Altix server with the aid of the Star-P
parallel computing platform (Interactive Supercomputing, Inc.)
The array manifold matrix was constructed using a procedure
similar to that used for the computer simulations. In this case,
however, the reference response was provided by a 20[pm
stainless steel wire suspended in a water tank.

A. Wire Targets
5 stainless steel wires (20[pm diameter) were suspended in a

water tank kept at room temperature. The wires were placed at
a depth of roughly 2.2cm from the transducer's face. The top
panel of figure 5 shows the image outputted by the SONOS,
whereas the bottom panel shows the TONE image of the 5
wires. In the case of TONE, hypothetical sources were placed
every 19[lm axially and every 67[pm laterally.

Conventional Beamforming
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Figure 5. Conventional beamforming (top) and TONE beamforming
(bottom) images of a set of 5 wires in water.

We have also analyzed the performance of TONE as a
function of mismatched speed of sound. In this case the array
manifold matrix was constructed using a speed of sound that
differs from the true value. Results obtained for a 15m/s and
30m/s error are shown in the top and bottom panels of figure 6,
respectively.

R.a.j m

Range (mm)

Figure 4. Conventional delay-and-sum beamforming (left) and TONE
beamformed (right) of a simulated anechoic cyst.
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V. DISCUSSION
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Figure 6. TONE beamformed images of the 5 steel wires with 15m/s (top)
and 30m/s (bottom) mismatch in speed of sound.

We also analyzed the performance of TONE as a function
of missing receive channels. While the images shown in figures
5 and 6 were generated using the full 128 channels provided by
the SONOS (135[pm pitch), figure 7 shows results obtained
when the number of channels is reduced to 64, 32, and finally
to 16. The corresponding pitches are 270[pm, 540[pm, and
1080[pm, respectively.
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In medical ultrasound, bright off-axis targets can seriously
* _ degrade image quality by introducing broad image clutter. The

application of ABF could reduce the effects of these targets,
thus improving the overall image quality. However, the unique
characteristics of ultrasound data make blind application of
existing adaptive beamforming algorithms unlikely to be

3 4 5 successful. In this paper a new beamforming technique, termed
(TONE), has been presented and its performance has been
evaluated both through simulations and experiments.

Figures 3 and 4 compare the TONE algorithm with the
*l _ conventional delay and sum beamforming on synthetic data

depicting wires and anechoic cyst phantoms. The superiority of
TONE is clearly evident from those figures. Although not
presented, we have performed additional simulations analyzing
the stability of TONE with respect to additive noise. We have

3 4 5 found that down to a 10 dB/channel SNR the performance of
TONE remains excellent.

Figures 5-7 analyze the performance of TONE on
experimental data. Hypothetical sources were placed every
19[lm axially and every 67[pm laterally. Similar results to those
obtained in simulations are observed in figure 5. Although the
five wires are clearly resolved, a small cloud of scatterers is
visible around them. This is most likely due to noise and
imperfection of the manifold matrix used. As stated above, the
manifold matrix was generated by simply delaying and re-
interpolating the response obtained from a single steel wire.
More sophisticated models could be generated which would
include for example the effects of element angular sensitivity.
Furthermore, the current formulation of TONE is derived for a
plane wave transmission. This was approximated by
transmitting simultaneously on all the elements ofthe array.

The results of figure 6 show the stability of TONE with
respect to aberration errors. The performance remains
acceptable for a mismatch in speed of sound of 15m/sec and
30m/sec. These results are significant since most adaptive
beamforming algorithm rapidly degrade when ideal conditions
are not met.

Finally, figure 7 shows that TONE performance is
independent on variations in channel number/pitch dimensions.
While applying conventional beamforming on a 16 channel
systems with 1.nmm pitch would result in massive grating
lobes, the bottom panel of this figure shows that TONE
remains almost unaffected.

Currently, the main limitation of this algorithm is
represented by its high computational complexity. While
higher spatial resolution is achieved using finer sampling of the
ROI, this also incurs in higher complexity. The generation of
the manifold matrix and the iterative procedure to estimate j
represents the most costly steps. For an image region of 1cm by
lcm and assuming a sampling grid of hypothetical sources of
20[pm by 70[pm, V is on the order of 64K by 71K elements.
However, for a given ROI and a desired sampling grid, the
manifold matrix can be calculated in advance and stored for
later application. Furthermore, TONE may also be applied to a
given receive data set using a variety of iterative approaches to
reduce the required computational complexity and data storage

2 3 4 5

2 3 4 5

Figure 7. TONE beamforming with 64 (top), 32 (middle), and 16 (bottom),
receive channels.
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size. In one such approach the complete received data set is
subdivided into multiple data segments that may or may not be
uniformly sampled and may or may not overlap. For each
received data segment, a distinct array manifold matrix is
formed to represent the responses from hypothetical sources
which could contribute to the specific data segment. TONE
could then be applied separately to each of the data segments
and their matched array manifold matrices. We are currently
investigating this and other approaches.

VI. CONCLUSIONS

A new beamforming approach has been presented in this
paper. Simulation and experimental results clearly suggest the
advantages of this algorithm over conventional beamforming.
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Abstract— Computer simulation is an important tool for the

design of phased array ultrasonic systems. FIELD II, which

determines the two-way temporal response of a transducer at a

point in space, is the current de facto standard for ultrasound

simulation tools [1].  However, our laboratory has recently

described [2] a complementary tool, entitled DELFI, which is

optimized for prediction of spatial responses at a single instant in

time.  This tool makes use of an analytical approach by defining

the impulse response as delta functions or sums of unit step or

unit ramp functions.  Here we have modified this original DELFI

tool, removing any far-field assumptions, to achieve a significant

increase in accuracy for near-field applications, with only a slight

loss in computational efficiency.  For applications requiring a

spatial response at a single instant in time, new DELFI is roughly

110 times faster than FIELD-triangles for similar amounts of

error and 9 times more accurate than original DELFI at a

computational cost factor of 1.3. For spatio-temporal

applications, new DELFI has about the same computational

efficiency as FIELD-triangles for similar amounts of error and is

9.3 times more accurate than original DELFI at a computational

cost factor of 1.5.

 I.  INTRODUCTION

Due to the broadband, near-field characteristics of typical
clinical ultrasound applications, simple mathematical models to
predict the ensuing pressure field of a system, such as the
Fraunhofer approximation, are of limited use. Consequently,
the design of modern ultrasound systems is highly dependent
on the use of computer simulation tools. It is important for
these tools to be both accurate and computationally efficient so
that the designer can use them for high level system
optimization without too great a time requirement.

Our laboratory has recently described such a simulation
tool, entitled DELFI, which utilizes a signal model similar to
that of FIELD II, the de facto standard for system simulation in
ultrasound.  This tool determines the system response as the
sum of polynomial functions and is optimized for computing
spatial responses at a single instant in time.

Here, we describe a modification to DELFI that allows for
increased accuracy in near-field simulations with little added
computation time.  Using a combination of superposition and a
piecewise-linear approximation to the true analytical response,
this new tool makes use of the pre-existing, optimized DELFI
architecture, leading to only small increases in computational
cost.

 II. ORIGINAL DELFI

The original DELFI simulation tool is optimized to
determine the spatial response of a system at a single instant in
time, thus making it complementary to the well known FIELD
II program.  Both tools make use of the same far-field
approximation originally described by Stepanishen [3], only
DELFI computes an analytical response as opposed to the
sampled, numerical response determined by FIELD II.

Drawing upon the methodology of FIELD, DELFI

describes the one-way spatial impulse response as one of three

functions, depending on the location of the field point with

respect to the computational element.  If the field point lies on

a line perpendicular to the element face and passing through its

center then the spatial impulse response as a function of time is

simply a delta function.  If, instead, the field point lies upon

one of two planes passing through the element center and

perpendicular to the element face then the spatial impulse

response in time is a rectangle function.  Otherwise, if the field

point fulfills neither of the above conditions then the spatial

impulse response in time is a trapezoid function.  The latter two

can be described analytically as the sum of unit step or ramp

functions.

h0 x, y, z, t( ) = A0 x, y, z( ) t t0( )          (1)

h1 x, y, z, t( ) = A1 x, y, z( )u t t1,0( ) A1 x, y, z( )u t t1,1( )          (2)

h2 x, y, z, t( ) = t t2,0( )A2 x, y, z( )u t t2,0( ) t t2,1( )A2 x, y, z( )u t t2,1( )
t t2,2( )A2 x, y, z( )u t t2,2( ) + t t2,3( )A2 x, y, z( )u t t2,3( )

       (3)

where h0 , h1 , and h2  represent the delta, rectangle, and

trapezoid spatial impulse responses respectively and u t( )  is

the unit step function. The scaling functions A0 x, y, z( ) ,

A1 x, y, z( ) , and A2 x, y, z( )  are constant at any specific spatial

location and include 1 r  spreading, scaling to account for the

element size, and an obliquity factor to account for a soft

transducer baffle [4], if desired. The time delay t0  present in

(1) is determined by the speed of sound and the distance from

the element center to the field point. Similarly, the delays

present in (2) and (3) are determined from the speed of sound

and distances between the field point and the element edges

and corners, respectively.
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Analytical equations for the resulting two-way responses
can then be obtained by convolving the appropriate one-way
response for the transmit element with that of the receive
element.  The result is six possible two-way impulse responses.

h0a t
h0b = A0a A0b t t0a t0b( )          (4)

h0 t
h1 = A0A1 1( )

j
u t t0 t1, j( )

j=0

1          (5)

h0 t
h2 = A0A2 cj t t0 t2, j( )u t t0 t2, j( )

j=0

3          (6)

h1a t
h1b = A1a A1b 1( )

j
1( )

k
t t1a , j t1b ,k( )u t t1a , j t1b ,k( )

k=0

1

j=0

1          (7)

h1 t
h2 = A1A2 1( )

j
ck t t1, j t2,k( )

2
u t t1, j t2,k( )

k=0

3

j=0

1          (8)

h2a t
h2b = A2a A2b c jck t t2a , j t2b ,k( )

3
u t t2a , j t2b ,k( )

k=0

3

j=0

3          (9)

Using cubic splines, the excitation function can also be
described analytically.  The system response can then be
computed as the summation of the convolution of cubic spline
segments with delta, unit step, or unit ramp functions.

 III. NEW DELFI

New DELFI was designed to achieve increased accuracy in
near-field simulations with only a small increase in
computation time. By simply adjusting the slopes of the ramp
functions used to describe the spatial impulse responses, we
can make a piece-wise linear analytical approximation of the
true impulse response, thereby removing any far-field
assumptions.  The result is a more accurate representation of
the spatial impulse response that can still be described as a sum
of ramp functions.  Because original DELFI is already
optimized to model the spatial impulse responses as sums of
ramp functions, new DELFI is only slightly more
computationally costly.   Figure 2 shows an example of how
the piece-wise linear approximations compare to the true
impulse responses.

Figure 1.  Map showing the three spatial regions used to determine element

subdivision.

This approximation was further improved upon by utilizing
superposition in regions where the field point is directly above
the element or off to one side.  By actively dividing the element
such that the field point is always in the outside region of the
sub-elements, as described by Figure 1, the response can
always be approximated by the sum of four ramp functions of
varying slopes.  So, if the field point is in the side region, the
element will be divided into two sub-divisions.  If the element
is in the inside region, the element is divided into four sub-

divisions.  Otherwise, the field point is already in the outside
region and the element is not sub-divided.

Figure 2.  The element is subdivided so that the field point is always in the

outside region of each of the sub-elements.  The responses of each sub-
element are summed to get the total element response.

 IV. VALIDATION

The accuracy of the proposed algorithm was tested by
comparing the one-way spatio-temporal response of a single
2D array element as predicted by both the new and original
DELFI with that of FIELD II using triangles, sampled at
10GHz temporally.  At such a sampling rate, FIELD-triangles
offers a very good model of the true system response, thus
making it a good choice for a gold standard.  The array element
was modeled using a single 300 x 300 m computational
element.  All responses assumed a combined excitation and
transmit electromechanical impulse response equal to a 5 MHz
sine multiplied by an 8-cycle Nuttall window.

Figure 3.  Normalized sum squared errors for new DELFI and original

DELFI as compared to FIELD-triangles sampled at 10GHz temporally.  Error

was computed on the temporal response at each spatial location in a square

extending 2 mm from the center of the element in azimuth and elevation,

sampled every 50 m.  The left column shows the errors for new DELFI and

the right column shows those for original DELFI.  From the top row to bottom
are the errors at ranges of 2mm, 200 m, and 100 m, respectively.
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The system response was determined in a square region
extending 2mm from the center of the element in both azimuth
and elevation, sampled every 50 m.  This space-space-time
data set was determined for a total of three different ranges, as
shown in Figure 3. The space-space-time datasets were
normalized by the peak amplitude of the temporal response for
the spatial point directly above the center of the element.  The
datasets were also sub-sample shifted temporally to provide
maximal alignment for the spatial point directly above the
element center.  Sum squared errors were computed for the
temporal response at each spatial location.

    

Figure 4.  Comparison of new DELFI, original DELFI, FIELD-rectangles,

and FIELD-triangles with respect to temporal sampling frequency for spatio-

temporal responses.  The left panel shows normalized sum squared error with

respect to FIELD-triangles sampled at 10 GHz.  The right panel shows

computation times as determined by the tic and toc commands in

MATLAB.

Sum squared error and computation times for new DELFI,
original DELFI, FIELD-rectangles and FIELD-triangles were
determined as a function of temporal sampling frequency.  The
same simulation parameters used above, only now fixed at a
range of 200 m, were repeated for temporal sampling rates
between 20 MHz and 1 GHz.  Sum squared errors, as shown in
the left panel of Figure 4, were again computed for the
temporal response at each spatial location and then averaged
over the entire spatial region, yielding a single mean error
value over the region at the given sampling rate.  Computation
times, as shown in the right panel of Figure 4, were determined
using the tic and toc commands within MATLAB (The

Mathworks, Inc. Natick, MA).

Figure 5.  Comparison of new DELFI, original DELFI, FIELD-rectangles,

and FIELD-triangles with respect to temporal sampling frequency for space-

space responses.  The left panel shows normalized sum squared error with

respect to FIELD-triangles sampled at 10 GHz.  The right panel shows

computation times as determined by the tic and toc commands in

MATLAB.

The same set of comparisons was repeated for the same
spatial region, only now at a single instant in time, yielding a
space-space response rather than a space-time response.  The
responses were normalized to the amplitude of the spatial point
directly above the element center and were bulk shifted
spatially so as to provide maximal alignment of the region.
Again, the normalized sum squared error was computed with
respect to FIELD-triangles sampled at 10 GHz.  However, for
this dataset, errors were computed on the amplitude of the
response at each spatial location in the region examined, as
there was not a full time course to compare.  Results from this
comparison are shown in Figure 5.

 V. DISCUSSION

The proposed algorithm is intended to offer increased
accuracy for only a slight sacrifice in computational efficiency
as compared to the original DELFI.  Examining the scales of
the colorbars in Figure 3, we can see that new DELFI has a
lower maximum error in each of the spatial regions examined,
showing that it is indeed a closer approximation to the true
response.  This result is to be expected, as new DELFI offers a
closer approximation to the true impulse response.

Examining the images in Figure 3, we see that the error of
new DELFI occurs in a specific spatial pattern.  The peak
errors in new DELFI occur along the diagonal from the center
of the element.  This is due to the true response along this line
having a highly curved shape that is difficult to model using
piece-wise linear approximations. It can also be seen that new
DELFI produces smaller errors in the region directly above and
directly to the sides of the element.  This is due to a subdivision
of the element in these regions and the application of
superposition.  The result is an element response that more
accurately models the true response in these regions, leading to
smaller errors.  By that same token, the errors within the inside
region are the smallest because they result from a superposition
of four sub-elements rather than the one or two used in the
outside and side regions, respectively.

Looking at the plots in Figure 4, we see that, for spatio-
temporal responses, new DELFI achieves a similar amount of
error sampled at 40 MHz as FIELD-triangles achieves sampled
at around 80 MHz.  Comparing the computation times of the
two methods at these respective temporal sampling
frequencies, we see that they both require about the same
amount of time to achieve similar errors.  For spatio-temporal
responses, new DELFI is also roughly 9.3 times more accurate
that original DELFI while taking roughly 1.5 times longer to
calculate.

Looking at the plots in Figure 5, we see that, for space-
space responses, new DELFI achieves a similar amount of
error sampled at 40 MHz as FIELD-triangles achieves sampled
at around 350 MHz.  Again comparing the computation times
of the two methods at these respective temporal sampling rates,
we see that new DELFI is roughly 110 times faster than
FIELD-triangles for similar amounts of error.  For space-space
responses, new DELFI is also about 9 times more accurate than
original DELFI while taking 1.3 times longer to compute.

Although new DELFI performs quite well with respect to
FIELD-triangles in both space-space and space-time
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applications, there are several modifications that could be made
to make it an even more appealing simulation tool.  For
example, a significant portion of the error generated by new
DELFI comes from a shifting of the energy in the impulse
responses due to superposition of the linear approximations.
By calculating the center of mass of the responses and taking
the difference, we can determine the necessary time shift to
minimize this source of error.

 VI. CONCLUSIONS

New DELFI has proven to be an attractive complement to
both FIELD and the original DELFI simulation tool.  It
provides an increase in accuracy for a small sacrifice in
computational cost, making it an ideal applicant for near-field
simulations of the system spatial response at a single instant in
time.  When used to determine spatial responses at a single
instant in time, new DELFI proves to be roughly two orders of
magnitude faster than FIELD-triangles to achieve similar error.
FIELD-rectangles and original DELFI do not achieve similar
errors in the frequency range examined.  When used to
determine spatio-temporal responses, new DELFI achieves
similar error to FIELD-triangles, but at a slightly longer

computation time.  However, several modifications could be
made to new DELFI to decrease its error even further, making
it as appealing in spatio-temporal applications as it is in spatial
applications.
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Abstract— For over fifty years adaptive beamforming (ABF) 
algorithms have been applied in RADAR and SONAR signal 
processing. These algorithms reduce the contribution of 
undesired off-axis signals while maintaining a desired response 
along a specific look direction. Typically, ABF achieves higher 
resolution and contrast than conventional beamforming (CBF), 
at the price of an increased computational load. In this paper we 
develop a novel ABF that can be applied to medical ultrasound, 
named the Time-domain Optimized Near-field Estimator, or 
TONE. We performed a series of simulations using ultrasound 
data to test the performance of this algorithm and compare it to 
conventional, data independent, delay and sum beamforming. We 
also performed experiments using a Philips SONOS 5500. CBF 
was applied using the default parameters of the Philips scanner, 
whereas TONE was applied on single-channel, unfocused data 
with plane wave transmit. TONE images were reconstructed at a 
sampling of 67µm laterally and 19µm axially. The results 
obtained for a series of 5 20µm wires in a water tank show a 
significant improvement in spatial resolution when compared to 
CBF. We also analyzed the performance of TONE as a function 
of speed of sound errors and array sparsity, finding TONE 
robust to both. 

I. INTRODUCTION 
Sensor arrays are used in many application fields including 

RADAR, SONAR, geophysics, and medical imaging. For these 
applications, the received data is often processed using the so-
called conventional “delay-and-sum” beamforming. While this 
approach is straightforward and easy to implement, off-axis 
scatterers can introduce clutter, reducing the overall quality of 
the beamformer output. The contribution of such clutter is 
shown in figure 1. In panel A, an array of sensors is focused 
along the dotted line and a single point target is placed along 
the look direction, or on-axis, at a fixed distance from the array. 
As energy is reflected toward the array, a signal is received by 
each of the individual sensors. Focal delays are applied to each 
signal to generate the sensor/range set of data shown in the 
figure. Summation across sensors to form an image line will 
amplify the signal coming from the look direction. However, 
when a secondary target is placed off-axis, as shown in panel B 
of figure 1, it may lie within the array’s beam and thus corrupt 
the desired information. This is represented by the tilted 
waveforms visible in the sensor/range data set. Although 

summation across sensors would amplify the signal coming 
from directly in front of the array, it would not entirely 
eliminate the contribution of the off-axis target. Finally, panel 
C of figure 1 depicts single channel echo data obtained from 
the thyroid of a human subject at Duke University. At least 
three clear waveforms are visible in this sensors/range data set. 
These non-focal targets would appear in this image line as 
clutter, reducing image contrast. 

 

Figure 1.  Panel A and B: schematic representation of the interference 
problem with conventional beamforming. Panel C: in vivo single channel 

thyroid data. The data clearly show the presence of bright off-axis scatterers as 
evidenced by the tilted plane wave. Courtesy of G. E. Trahey. 

The problem of nulling the contribution of off-axis targets 
was first investigated for RADAR and SONAR systems by 
extending the pioneering work of Norbert Wiener. The This work was supported by the US Army Congressionally Directed 
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application of Wiener filter theory to array signal processing 
led to the initial development of adaptive beamforming [1-3]. 
In adaptive beamforming, the information associated with the 
data received by an array of sensors is used to determine a set 
of filter weights that optimize the beamformer output. In the 
past fifty years, a plethora of algorithms have been developed, 
each exploiting specific properties of the received data [2-3]. 
These algorithms are able to achieve resolution far superior to 
that predicted by diffraction theory, while attaining excellent 
side lobe reduction. 

 

Figure 2.  Schematic representation of TONE beamforming. 

While adaptive beamforming is often used in applications 
involving narrowband signals in the far-field, current 
techniques have not been proven successful in the case of 
broadband signals originating in the near-field of the array. 
This is the case of medical ultrasound. In this paper we present 
an algorithm that is well suited for broadband signals generated 
in the near-field. This algorithm is built upon the Spatial 
Processing: Optimized and Constrained (SPOC) technique 
originally described by Van Trees et al. for applications in 
passive SONAR [4]. We term it Time-domain, Optimized, 
Near-field Estimator, or TONE. TONE is particularly useful 
since it does not require knowledge of second order statistics 
and is therefore suitable to use with only a single realization of 
data. Furthermore, it does not require any additional pre-
processing technique to be applied. 

II. TONE BEAMFORMING 
The imaging region, named here the region of interest 

(ROI), is first subdivided into a collection of hypothetical 
sources at arbitrary positions, as shown schematically in the top 
panel of figure 2. Finer grid sampling yields finer final 
resolution but entails higher computational costs. For each 
hypothetical source in the ROI, we calculate the hypothetical 
signal received by the array for that specific point (i.e., the 
spatial responses). For every hypothetical source, the spatial 
response is a matrix of dimensions TxN, where T is the number 
of samples in the axial, or temporal, dimension and N is the 

number of elements in the array. After the spatial responses for 
all the hypothetical sources have been calculated, these 
responses are reshaped to form an array manifold matrix V of 
dimensions NTxLP, where L and P are the numbers of 
hypothetical sources in the range and lateral dimensions, 
respectively. The observation model becomes: 

x = Vf      (1) 

where x=[x1 x2 … xN]T is the data received by the N-element 
array and f is the LPx1 signal vector, whose elements are the 
amplitudes of the hypothetical sources located in the ROI. x is a 
NTx1 vector that is obtained by concatenating the Tx1 channel 
data xi. We wish to estimate the signal vector f, given x and V. 
For this purpose we consider the joint probability density 
function (PDF) p(x,f). The maximum likelihood estimate of f is 
given by [5]: 

ˆ f = argmax f p(x, f ) = argmax f (p(x / f )p( f ))       (2) 

We assume that the marginal PDF p(f) is known a priori and 
mathematically expressed as a zero-mean Gaussian function. 
Furthermore, since (1) needs to be satisfied, equation (2) 
reduces to the following [4]: 

ˆ f = argmax f p( f )    (3) 

which is referred to as maximum a posteriori (MAP) estimate 
of f. By substituting the marginal PDF p(f) in (3) and 
rearranging terms, the MAP problem becomes: 

argmax f − f l

2

l=1

LP

 subject to x = Vf  (4) 

where fl are elements of f. A solution for (4) is found using the 
iterative procedure described in [4]. 

Figure 3.  Conventional delay-and-sum beamforming (left) and TONE 
beamformed (right) of simulated point targets. 

III. SIMULATION METHODS AND RESULTS 
A series of computer simulations were performed to 

compare the performance of TONE to conventional delay-and-
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sum beamforming. All calculations were performed in 
MATLAB and utilized synthetic ultrasound signals. 

A. Point Targets 
A series of point targets were distributed within a 4x5mm 

region in range and azimuth, respectively. In this case, we 
simulated a 33 element linear array operating at 5 MHz. The 
final sampling frequency was set at 40 MHz. A plane wave was 
used on transmit for both the conventional beamforming and 
TONE. Conventional beamforming was applied on the 
received RF data using Hann apodization and dynamic receive 
focusing. For TONE, we discretized the image region in a 
series of hypothetical targets separated 20µm in range and 
120µm in azimuth. The positions of the points were chosen so 
that some, but not all coincide with the positions of the 
hypothetical targets. The results of this set of simulations are 
presented in figure 3. 

B. Anechoic Cyst 
A 1mm radius anechoic cyst was placed in front of the 

array and surrounded by roughly 4,000 scatterers uniformly 
distributed within the image region. Scatterers’ amplitudes 
followed a Gaussian distribution with zero mean and standard 
deviation equal to one. Simulation methods are the same of 
those described in the previous section, except that the 
hypothetical source sampling was reduced to 100µm in 
azimuth. Again, the positions of the scatterers do not 
necessarily coincide with the position of the hypothetical 
sources. The results are shown in figure 4. 

Figure 4.  Conventional delay-and-sum beamforming (left) and TONE 
beamformed (right) of a simulated anechoic cyst. 

IV. EXPERIMENTAL METHODS AND RESULTS 
Experiments were also performed using a modified Philips 

SONOS 5500 imaging system employing a 6MHz linear array. 
The system was programmed to transmit a plane wave and to 
obtain data from individual channels. Received data was 
filtered using a 100 taps FIR filter. The array manifold matrix 
was constructed by warping and shifting the spatial response 
obtained from a 20µm stainless steel wire suspended in a water 
tank. 

A. Wire Targets 
5 stainless steel wires (20µm diameter) were suspended in a 

water tank kept at room temperature. The wires were placed at 
a depth of roughly 2.2cm from the transducer’s face. The top 
panel of figure 5 shows the image outputted by the SONOS, 
whereas the bottom panel shows the TONE image of the 5 
wires. In the case of TONE, hypothetical sources were placed 
every 19µm axially and every 67µm laterally. 

 

Figure 5.  Conventional beamforming (top) and TONE beamforming 
(bottom) images of a set of 5 wires in water. 

We have also analyzed the performance of TONE as a 
function of mismatched speed of sound. In this case the array 
manifold matrix was constructed using a speed of sound that 
differs from the true value. Results obtained for a 15m/s and 
30m/s error are shown in the top and bottom panels of figure 6, 
respectively. 

 

Figure 6.  TONE beamformed images of the 5 steel wires with 15m/s (top) 
and 30m/s (bottom) mismatch in speed of sound. 
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We also analyzed the performance of TONE as a function 
of missing receive channels. While the images shown in figures 
5 and 6 were generated using the full 128 channels provided by 
the SONOS (135µm pitch), figure 7 shows results obtained 
when the number of channels is reduced to 64, 32, and finally 
to 16. The corresponding pitches are 270µm, 540µm, and 
1080µm, respectively. 

 

Figure 7.  TONE beamforming with 64 (top), 32 (middle), and 16 (bottom), 
receive channels. 

V. DISCUSSION 
In medical ultrasound, bright off-axis targets can seriously 

degrade image quality by introducing broad image clutter. The 
application of ABF could reduce the effects of these targets, 
thus improving the overall image quality. However, the unique 
characteristics of ultrasound data make blind application of 
existing adaptive beamforming algorithms unlikely to be 
successful. In this paper a new beamforming technique, termed 
(TONE), has been presented and its performance has been 
evaluated both in simulations and experiments. 

Figures 3 and 4 compare the TONE algorithm with the 
conventional delay and sum beamforming on synthetic data 
depicting wires and anechoic cyst phantoms. The superiority of 
TONE is clearly evident from those figures. Although not 
presented, we have performed additional simulations analyzing 
the stability of TONE with respect to additive noise. We have 
found that down to a 10 dB/channel SNR the performance of 
TONE remains excellent. 

Figures 5-7 analyze the performance of TONE on 
experimental data. Hypothetical sources were placed every 
19µm axially and every 67µm laterally. Similar results to those 
obtained in simulations are observed in figure 5. Although the 
five wires are clearly resolved, a small cloud of scatterers is 
visible around them. This is most likely due to noise and 
imperfection of the manifold matrix used. As stated above, the 
manifold matrix was generated by simply warping and shifting 
the response obtained from a single steel wire. More 
sophisticated model could be generated which would include 
for example the effects of element angular sensitivity. 

The results of figure 6 show the stability of TONE with 
respect to aberration errors. The performance remains 
acceptable for a mismatch in speed of sound of 15m/sec and 
30m/sec. These results are significant since most adaptive 
beamforming algorithm rapidly degrade when ideal conditions 
are not met. 

Finally, figure 7 shows that TONE performance is 
independent on variations in channel number/pitch dimensions. 
While applying conventional beamforming on a 16 channel 
systems with 1.1mm pitch would result in massive grating 
lobes, the bottom panel of this figure shows that TONE 
remains almost unaffected. 

Currently, the main limitation of this algorithm is 
represented by its high computational complexity. While 
higher spatial resolution is achieved using finer sampling of the 
ROI, this also incurs in higher complexity. The generation of 
the manifold matrix and the iterative procedure to estimate f 
represents the most costly steps. For an image region of 1cm by 
1cm and assuming a sampling grid of hypothetical sources of 
20µm by 70µm, V is on the order of 64K by 71K elements. 
However, for a given ROI and a desired sampling grid, the 
manifold matrix can be calculated in advance and stored for 
later application. Furthermore, TONE may also be applied to a 
given receive data set using a variety of iterative approaches to 
reduce the required computational complexity and data storage 
size. In one such approach the complete received data set is 
subdivided into multiple data segments that may or may not be 
uniformly sampled and may or may not overlap. For each 
received data segment, a distinct array manifold matrix is 
formed to represent the responses from hypothetical sources 
which could contribute to the specific data segment. TONE 
could then be applied separately to each of the data segments 
and their matched array manifold matrices. We are currently 
investigating this and other approaches. 

VI. CONCLUSIONS 
A new beamforming approach has been presented in this 

paper. Simulation and experimental results clearly suggest the 
advantages of this algorithm over conventional beamforming.  
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Abstract—We have previously described a metric that 
characterizes the 3D resolution of broadband ultrasound systems 
[1].  Resolution is expressed as the size of a spherical anechoic 
cyst, embedded in a speckle generating background, that is 
required to generate a specific contrast.  The contrast of the cyst 
relative to the background depends on the ratio of the system 
point spread function (psf) energy outside the cyst to the total psf 
energy.  In this work, we apply our formulation to guide the 
design of a low-cost, C-scan system being developed at the 
University of Virginia, demonstrating the utility of our metric in 
the optimization of system parameters.  We simulated the impact 
of f/# and show that higher f/#’s yield better cystic contrast for 
larger cysts, but lower contrast for smaller cysts.  We also applied 
a constrained least squares (CLS) approach to design receive 
apodization profiles to optimize cystic contrast.  We use a linear 
algebra formulation of the psf and minimize the psf’s energy in 
regions outside a specified boundary.  We show results that the 
CLS apodization profiles improve contrast around -10 dB 
compared to a flat apodization profile at a range of cyst sizes.  
Our results highlight the metric’s utility in designing system 
parameters and our CLS apodization profiles improve cystic 
contrast.   

I.  INTRODUCTION 
The ability to reliably estimate the imaging performance of 

ultrasound systems is critical, both to characterize the 
fundamental imaging limits of the system, and to optimize 
image quality. It is possible to estimate the performance of 
existing systems by imaging phantoms or human subjects, but 
it is necessary during system design to be able to determine 
imaging performance prior to system construction. The ability 
to accurately predict performance enables system optimization 
and quantitative consideration of engineering tradeoffs early in 
the design process and significantly reduces the time and cost 
investment in system development.  

The most common metric used to estimate scanner 
performance is the beamplot [2], the use of which has been 
adapted from RADAR. The -6 dB beamwidth of the beamplot, 
the full width at half maximum (FWHM), and the beamwidth 
at other levels are used to estimate scanner resolution. Sidelobe 
and grating lobe levels are used to estimate eventual image 
contrast. Although widely used, there are disadvantages to 
using the beamplot to estimate the performance of ultrasound 
systems. Targets in medical ultrasound are usually weakly 
reflecting tissues in a scattering medium, unlike RADAR 

targets that are more often highly reflective and in a non-
scattering background. There may be scenarios in which the 
FWHM criterion indicates excellent performance, but actual 
images of tissue do not reveal important details. Vilkomerson 
et al. [3] demonstrated that the FWHM criterion sometimes 
provides misleading information about resolution in ultrasound 
systems.  It is, in addition, difficult to decide whether to 
optimize the mainlobe width or sidelobe and grating lobe levels 
for an overall increase in image quality. Although imaging 
phantoms and repeated simulations may determine imaging 
performance, such approaches are time consuming and do not 
offer a simple method to guide system design.  A theoretical 
metric that combines resolution and contrast in a relevant way 
to diagnostic ultrasound imaging is therefore required. 

Vilkomerson et al. addressed the limitations of the 
beamplot and proposed the concept of “cystic resolution” [3] in 
which performance was quantified as the size of a void that 
produced a given contrast. The analysis, while novel and 
useful, was limited to narrowband circular apertures and 
neglected the axial dimension. Üstüner et al. [4] extended 
cystic resolution to a 3D broadband model that addressed the 
above problems, but did not describe its theoretical foundation, 
resulting in a limited understanding of the formulation and its 
utility and drawbacks. A general cystic resolution metric was 
previously derived by our group [1]; the metric accounts for the 
effect of electronic noise and, under certain assumptions, 
reduces to that described in [4]. 

This paper demonstrates the utility of the resolution metric 
to optimize system parameters.  We have applied it to guide the 
design of a low-cost, C-scan system being developed at the 
University of Virginia.  We also apply the metric in designing 
apodization windows for optimal cystic resolution on a 1D 
linear array.  Using this metric, parameter optimization reduces 
to the straightforward task of picking the value that yields the 
maximum contrast at the cyst size of interest, or alternatively 
picking the value that yields the required contrast with the 
smallest cyst. 

II. THEORY 

A. Cystic Resolution Metric 
The goal of the metric, as stated above, is to quantify the 

contrast resolution of an arbitrary broadband ultrasound 
system. We refer the reader to [1] for a more detailed 

This work was supported by NIH NIBIB grant EB002349 and by award 
W81XWH-04-1-0590 from the US Army CDMRP. 
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discussion of the derivation of the metric and provide a brief 
synopsis here.  Let the point spread function (psf) of the 
ultrasound system be defined as ( )txP , , a function of three-
dimensional (3D) space ( x ) and time ( t ).  The medium 
scattering function is modeled as a zero-mean stochastic 
process ( )xN  undergoing negligible tissue motion during 
reception of an individual echo line and therefore is constant 
with time. The effect of electronic noise during transmit is 
assumed to be negligible due to the high signal to noise ratio 
(SNR) on transmit, and the electronic noise on receive is 
modeled as another zero-mean stochastic process ( )tE  which is 
purely additive.  We define a mask that describes the location 
and size of a spherical anechoic void (cyst): 

( ) 0=xM , Rx ≤  

                                              1= , Rx > ,                        (1) 

where R is the radius of the cyst and the cyst center is at the 
origin of the coordinate system. ( )xM is also independent of 
time since tissue motion during the acquisition is assumed to be 
negligible. The cyst embedded in a scattering background is 
therefore represented as ( ) ( )xMxN . The received signal energy 
is expected to be at a minimum when the beam axis coincides 
with the center of the void. The received signal in this 
circumstance can be written as: 

       ( ) ( ) ( ) ( ) ( )tExdxMxNtxPtSc += ∫
∞

∞−

,                    (2) 

The electronic SNR can be defined as a function of time: 

         ( ) ( )
( )

( )

( )tE

xdtxPa

t
t

tSNR
noise

signal

2

2 ,∫
∞

∞−==
σ
σ                         (3) 

where ( )tsignalσ  and ( )tnoiseσ  are the standard deviations of the 
signal and noise components respectively and a is a scaling 
factor. Note that the standard deviations are defined over an 
ensemble of signal and noise realizations and not over time.  

While the metric can completely characterize system 
performance for a given cyst, analysis at the instant in time 
when the received signal is minimum (i.e. when as much of the 
psf energy as possible lies within the cyst) is usually sufficient. 
At this single instant in time ot , the psf can be expressed as a 
function of only 3D space at the time of interest ( )xP

ot
, and the 

SNR is also defined at the time of interest 
ot

SNR .  The contrast 
of the cyst relative to the background is defined as the ratio of 
the rms signal received with the cyst to the rms signal received 
from the background [1]: 
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=                          (4) 

where out
to

E  is the psf energy outside the cyst and tot
to

E  is the 

total psf energy, both at time ot .  Equation (4) describes the 
contrast of an anechoic cyst, whose size and location are 
described by the mask ( )xM , relative to background speckle 
obtained by an imaging system with the psf ( )xP  and 
electronic SNR defined statistically by 

ot
SNR .  Neglecting 

electronic noise, 
ot

SNR becomes infinite and (4) can be 
modified to the equation for contrast presented in [4], which is 
simply the square root of the ratio of the psf energy outside the 
cyst and the total psf energy: 

tot
t

out
t

t
o

o

o E
E

C =                                      (5) 

The contrast for cysts of different sizes can be computed 
using the above expressions for cystic contrast, and system 
performance can be characterized as a function of cyst size as 
in [3] and [4]. This metric can be used for 4D spatiotemporal 
analysis of broadband ultrasound systems, but 3D spatial 
analysis using (4) or (5) is adequate to characterize scanner 
performance as temporal analysis does not provide critical 
information. Note that in certain cases, it is valuable to 
compute the metric with cysts at different locations to quantify 
the depth of field, the effect of dynamic focusing, and other 
factors pertaining to the shift variance of the imaging system. 
Note also that while the metric can be used to determine cystic 
resolution, it can also be used to optimize system parameters by 
computing contrast as a function of cyst size and determining 
parameter values that maximize the contrast at the cyst sizes of 
interest. 

B. Constrained Least Squares (CLS) Apodization Design 
One conspicuous result of the above metric is that cystic 

contrast is a function of the spatiotemporal psf energy.  In fact, 
contrast would be maximum if all the energy of the psf lies 
inside the void of the cyst.  Whereas the beamplot can be 
misleading about overall image quality, our new metric 
specifically defines the portions of the psf that affect cystic 
contrast most dramatically.  Contrast will improve when any 
region of the psf outside the cyst boundary contains less energy 
or there is more energy of the psf inside the cyst. 

Cystic contrast is degraded due to psf energy outside the 
cyst.  We minimize this energy by solving for the set of receive 
aperture weights that, when applied to the synthetic receive 
element responses, will yield a psf with minimum energy 
outside the cyst boundary.  The acoustic field during pulse echo 
propagation at a point in space at a single time point can be 
expressed as a function of a propagation matrix, S, and a set of 
aperture weightings, w.  The propagation matrix uses 
superposition to describe the contribution of each element at 
each field point as a function of time.  S is a function of the 
transmit aperture weights, the excitation pulse, and the 
individual element impulse responses of the transmit and 
receive apertures [5]. 
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The two way pulse echo propagation matrix, S, for a fixed 
transmit aperture and n element receive aperture at a total 
number of p points in three dimensional space is: 

         



















=

npp

n

ss

s
sss

S

,1,

1,2

,12,11,1

.

..  ,                  (6) 

where Si,j is the contribution of the jth element at the ith point 
in space.  The receive aperture weighting function, T

iw , for 
each of the n elements used on receive can be written in vector 
form as: 

[ ]T
n

T
i wwwww 321=  ,                   (7) 

where T denotes the vector transpose operation.  Using (6) and 
(7), we can now write the complete two-way pulse echo system 
psf, zP , as follows: 

              T
z SwP =           (8) 

the propagation matrix multiplied by the receive weighting 
vector.  Note that this results in the one dimensional column 
vector, zP , where z = [1, 2, …. p] the total number of points 
where the system psf is measured in three dimensional space.   

Adequate spatial sampling of the three dimensional psf 
yields huge propagation matrices, and therefore for this paper 
we have limited our analysis to two dimensions, azimuth and 
range.  Clearly the elevation dimension matters in planar 
ultrasonic B-mode images, even with acoustic lenses on linear 
arrays.  However, restricting our analysis to two dimensions 
eases visualization of the algorithm while still providing 
meaningful results. 

Assuming the psf is focused at the center of the cyst, our 
problem becomes minimizing the energy outside the cyst 
boundary.  The algorithm is initialized by selecting the spatial 
points of the psf which lie outside the cyst.  We form the 
associated propagation matrix, S, which has as many rows as 
the number of points outside the cyst region and as many 
columns as elements in the active receive aperture.  The 
algorithm calculates the weights which minimize the energy in 
the sidelobe regions while simultaneously maintaining a peak 
gain at the center of the cyst.  These weights are determined 
from the constrained least squares problem: 

 2
min T

w
Sw

T
   subject to the linear constraint 1=TCw     (9) 

In this expression 2•  denotes the square of the 2 -norm and 
the row vector C has elements corresponding to the amplitude 
of each synthetic receive response at the center of the cyst.  The 
equation in (9) is common in the signal processing literature 
and drawing upon [6] the optimal receive aperture weightings 
are given by: 

                  ( )
( ) CSSC

CSSw
TT

T
T
opt 1

1

−

−

=               (10) 

where ( ) 1−•  denotes the matrix inverse operation.  Equation (10) 
provides a simple method to calculate the receive weightings 
that will minimize the energy in the psf outside a specified 
mainlobe region while simultaneously achieving peak gain 
inside the mainlobe region. The optimal receive weights 
minimize out

to
E  in (5) above, so we expect to see improved 

cystic contrast using the CLS apodization windows over 
commonly used windows such as the flat, Hamming and the 
Nuttall [7] window.  

III. SIMULATIONS 
The cystic resolution metric is useful in guiding the design 

and optimization of ultrasound systems.  In our group’s efforts 
to develop a low cost, handheld, C-scan ultrasound system, the 
metric was used to quantify the impact of system parameters 
such as f/#, electronic noise, quantization in the analog to 
digital converter, crosstalk, and apodization.  The new system 
utilizes a fully sampled 2D array interfaced to a custom 
integrated circuit [8].  Our beamforming strategy, direct 
sampled IQ (DSIQ) beamforming [9], reduces system 
complexity and cost but suffers from poorer image quality than 
might be obtained using time delays.  The system transmits an 
unfocused plane wave and apodizes and focuses on receive.  

We simulated our system using DELFI [10], a custom 
ultrasound simulation package that efficiently calculates the 
spatial response of a given aperture.  Spatial pulse-echo 
responses were computed by transmitting a plane wave on all 
elements and synthetically receiving on each individual 
element.  The psfs were computed in a 3D cylindrical volume, 
focused using DSIQ beamforming and apodized with a 2D 
Nuttall [7] window on receive.   

One of the system parameters investigated was the choice 
of f/# during reception.  This is an important design parameter 
for our system because the DSIQ focusing scheme is limited by 
larger apertures [9].  In addition the elements in the 2D array 
are highly directive due to a large pitch (635 µm) and thus 
larger apertures will suffer from higher grating lobes.  We 
explored the impact of f/# by computing cystic contrast curves 
as a function of cyst radius for varying f/#’s. 

Another system parameter investigated was receive 
apodization profiles.  We calculated receive weights for a linear 
array operating at 6.5 MHz and a 50% fractional bandwidth 
with a fixed transmit focus at 2cm.  Using DELFI [10] 2D 
spatial psfs were computed for the linear array by synthetically 
receiving on each element at the transmit focus.  The 2D psfs 
were then used to calculate the optimal receive weights 
according to the CLS approach outlined above.  Corresponding 
cystic contrast curves as a function of cyst radius were 
calculated for the CLS windows and compared to the flat, 
Hamming and the Nuttall [7] window.    

IV. RESULTS AND DISCUSSION 
Figure 1 below shows the cystic contrast curves for the f/# 

simulations.   
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Figure 1.  Effect of receive f/#. Contrasts were computed using equation (6) 
and are plotted as a function of cyst size for varying f/#’s. 

It is apparent that contrast increases with increasing f/# for 
large cysts. This is due to highly directive elements that 
generate large grating lobes when larger apertures are used. 
However, higher f/#s (>f/1.5) result in a broad mainlobe and 
reduce contrast when imaging small cysts. Figure 1 suggests 
that an f/1 for the low cost system would be a good 
compromise for imaging cysts of all sizes.  This analysis 
ignores the effect of aperture size on system sensitivity. 
Sensitivity increases with increasing aperture size.  Considering 
the impact of SNR and f/# simultaneously may be necessary. 

Optimal receive apodization profiles were computed for a 
linear 1D array according to the CLS formulation discussed 
above.  For every cyst radius from 0.1mm to 2cm the CLS 
apodization profiles resulted in psfs that had the lowest energy 
in the sidelobe region compared to other windows.  In 
conventional systems, scanning through apodization profiles 
for each cyst radii would be unrealistic.  Therefore, it is 
interesting to see how a profile designed for a specific cyst size 
performs across a range of sizes.  We chose the profile 
corresponding to a cyst radius of 0.4mm and then computed the 
cystic contrast curve.  Figure 2 shows the contrast curves for 
this particular CLS profile compared to the flat, Hamming, and 
Nuttall windows.  Although the CLS window does not produce 
the best contrasts for smaller cysts (<0.2mm) or for larger cysts 
(>0.8mm), it performs well over the entire range, with -10dB 
improvement in contrast over the flat apodization and -2dB 
improvement over the Hamming profile for cysts around 
0.4mm in radius.  The Nuttall window does a poor job for the 
small cysts due to a relatively large mainlobe.  All the curves 
plateau as the cyst encompasses more of the psf energy. 

We attempted to maximize cystic contrast through our least 
squares formulation by minimizing the energy in the psf 
outside the cyst region.  Although the apodization profiles did 
minimize this energy they also reduced sensitivity in the 
mainlobe region.  For larger cyst sizes the CLS apodization 
profiles do not produce “optimal” cystic contrast due to 
decreased psf energy inside the cyst compared to the other 
apodization windows.  We are currently addressing this 
shortcoming by adjusting the constraints.  It may be necessary 
to consider the impact of SNR and apodization simultaneously. 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Effect of apodization.  The CLS window performs well across the 
range of cyst sizes. 

V. CONCLUSIONS 
Our cystic contrast resolution metric is extremely useful in 

guiding system design of 3D broadband coherent imaging 
systems including the effects of electronic noise.  The metric 
was used in the design of a portable, low cost ultrasound 
system currently under development.  The metric also 
stimulated the design of optimal apodization profiles to 
maximize cystic contrast for a 1D linear array.  The results 
presented in this paper demonstrate the utility of the metric in 
designing ultrasound systems and show that it enables 
optimization of any parameter that affects image quality. 
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Abstract— For over thirty years adaptive beamforming (AB) 
algorithms have been applied in RADAR and SONAR signal 
processing. Higher resolution and contrast is attainable using 
those algorithms at the price of an increased computational load. 
In this paper we consider four beamformers (BFs): Frost BF, 
Duvall BF, SSB, and SPOC. These algorithms are well know in 
the RADAR/SONAR literature. We have performed a series of 
simulations using ultrasound data to test the performance of 
those algorithms and compare them to the conventional, data 
independent, beamforming. Every algorithm was applied on 
single channel ultrasonic data that was generated using Field II. 
For a 32 element linear array operating at 5 MHz, beamplot 
results show that while the Duvall and SSB beamformers reduce 
sidelobes by roughly 20 dB, the sidelobes using the Frost 
algorithm rise by 23dB. The –6dB resolution is improved by 
38%, 83%, and 43% in the case of Duvall, Frost, and SSB 
algorithms, respectively. In the case of SPOC, the beamplot 
shows a super-resolution peak with noise floor at –110 dB. 
Similar results were obtained for an array consisting of 64 
elements. 

I.  INTRODUCTION 
The application of Wiener filter theory to RADAR and 

SONAR signal processing led to the development of adaptive 
beamforming (AB) [1, 2]. In AB, the information associated 
with the data received by an array of sensors is used to 
determine a set of weights that optimize the beamformer output 
[2]. The weights are determined by minimizing the energy in 
the beamsum signal, subject to the constraint that the 
beamformer must exhibit a given response in the look-
direction. The second order statistics of the data are used to 
generate the weights. These algorithms are able to achieve 
resolutions far superior to those predicted by diffraction theory, 
while attaining excellent side lobe reduction. In parallel, a 
series of adaptive algorithms has also been developed which do 
not rely on statistical properties of the data and thus can be 
used on a single realization (or snapshot). In the past fifty years 
a plethora of algorithms have been developed, each exploiting 
specific properties of the received data. 

In medical ultrasound, bright off-axis targets can seriously 
degrade image quality by introducing broad image clutter, 
which reduces image contrast and resolution. Figure 1 shows 
single channel radio frequency (RF) echo data obtained from 
calcifications in the thyroid of a human subject at Duke 
University. At least three clear waveforms are visible in this 

data set. Although summation across channels to form an RF 
image line would amplify the echo coming from directly in 
front of the array, it would not entirely eliminate the two other 
visible targets. These non-focal targets would appear in this 
image line as clutter, reducing image contrast. 

The application of AB can reduce the effects of bright off-
axis targets, thus improving the overall image quality. In our 
laboratory we are exploring the application of these AB 
algorithms to medical ultrasonic imaging. We have examined 
statistical AB algorithms such as the Duvall and Frost 
beamformers [3,4], as well as deterministic AB algorithms 
such as the Adaptive Single Snapshot Beamformer (SSB) and 
the Spatial Processing Optimized and Constrained (SPOC) 
algorithm [5,6]. These algorithms are well known and 
recognized in the RADAR/SONAR literature. 

We briefly describe some AB algorithms and present 
simulation results obtained applying the algorithms to medical 
ultrasound data. 

 

Figure 1.  In vivo single channel thyroid data. The data clearly show the 
presence of bright off-axis scatterers as evidenced by the tilted plane wave 

visible in the top half of the image. Courtesy of G. E. Trahey. 

II. ADAPTIVE BEAMFORMING ALGORITHMS 
Adaptive beamformers can be divided in two broad 

categories: statistical and deterministic. While many algorithms 
have been developed in the past years, we consider two 
statistical and two deterministic beamformers (BF). 

This work was supported by the US Army Congressionally Directed 
Medical Research Program in Breast Cancer grant No.W81XWH-04-1-0590   
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A. Statistical Beamformers 
1) Frost Beamformer [3] 

A weight vector is chosen to minimize the output energy 
given a linear constraint on the weights. Mathematically: 
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where R is the covariance matrix, C is the constraint matrix, 
and f is the desired frequency response. wopt in (1) represents 
the optimal weight solution. The Frost BF uses K taps in time, 
therefore allowing the use of broadband signals. This algorithm 
requires knowledge of the second order statistics of the signal 
of interest and interference. Significant problems occur if the 
signal of interest and noise (off-axis signal) are correlated (i.e., 
they have the same spectral response). A schematic 
representation of the Frost BF is shown in figure 2. 

 

Figure 2.  Schematic representation of the Frost beamformer. 

2) Duvall Beamformer [4] 
The Duvall BF is equivalent to the Frost BF in its 

formulation and assumptions. This algorithm, however, is 
designed to get around the problem arising when signal and 
noise are correlated. It uses two BFs; the first one is a slave BF, 
whereas the second is connected to the array elements through 
a subtractive process. The weights calculated in the latter BF 
are then copied in the slave BF to generate an output. A 
schematic representation of the Duvall BF is shown in figure 3. 

 

Figure 3.  Schematic representation of the Duvall beamformer. 

B. Deterministic Beamformers 
The following BFs do not make use of any statistics, 

therefore are suitable to use with only a single snapshot of data. 

1) Adaptive Single Snapshot Beamformer (SSB) [5] 
This algorithm subdivides the array into G groups of K 

elements (the groups can overlap), and rearranges the data into 
a GxK matrix X. For every steering direction, this beamforming 
scheme solves the right- and left-hand side generalized 
eigenvalue problem given by: 
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where a1 and g1 are the group and sub-group (respectively) on-
axis steering vector, whereas u and v are the beamforming 
weights. The SSB BF is designed for narrowband, far field 
signals. However, it can also be implemented in the frequency 
domain for broadband data. A schematic representation of the 
SSB BF is given in figure 4. 

 

Figure 4.  Schematic representation of the SSB beamformer. 

2) SPOC [6] 
This algorithm takes a completely different approach. A 

signal model is first generated of the field produced by a series 
of hypothetical sources. The sensors’ output is matched to the 
signal model to solve for the position and intensity of the real 
sources. Statistics are not required and both near-field/far-field 
and broad/narrow band cases can be modeled. 

The algorithm:  

• The region of interest (ROI) is subdivided in a grid of 
hypothetical sources at arbitrary positions, as shown 
in figure 5. Finer grid sampling yields finer final 
resolution. 

• For each point in the ROI, we calculate the 
hypothetical field received by the array for that 
specific point. These responses are included into the 
array manifold matrix V of dimensions LxP, where L 
and P are the numbers of hypothetical sources in the 
range and lateral dimensions, respectively. 

• The data vector x = [x1 x2 … xN] is received by the N-
element linear array. This vector can be modeled as x 
= V*f. In this expression, f is the LPx1 signal vector, 
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Figure 6.  Beamplots for a 32 element linear array operating at 5MHz with 
70% bandwidth. No apodization was used for the conventional BF. 

Figure 6 shows beamplots obtained from a 32 element 
linear array. The four adaptive BFs are compared to the 
conventional, data independent BF. No apodization was used in 
the conventional BF. In the case of Frost and Duvall BFs, the 
constraint vector f is chosen to match the signal BW. For the 
SSB BF, the array is divided in sub-apertures of 16 elements 

each. Finally, in the case of SPOC, hypothetical sources are 
placed every 20µm in range and every 100µm in azimuth. 

The results presented in figure 6 clearly show that SPOC 
outperform other adaptive BFs both in terms of resolution and 
contrast. For this reason and because of limited space, in the 
following sections we present simulation results that compare 
only conventional BF and SPOC. 

B. Wire Targets 
In this case, we simulated a 33 element linear array. A 

plane wave was used in transmit. A series of wire targets were 
distributed within a 4x5mm region in range and azimuth, 
respectively. The receive data was sampled at 40MHz and the 
conventional BF was applied on RF data using dynamic 
focusing. In the case of SPOC, we discretized the image region 
in a series of hypothetical sources separated 20µm in range and 
120µm in azimuth. As before, complex demodulated IQ signals 
were used with SPOC. The results of this set of simulations are 
presented in figure 7 and 8. The figures are in linear scale. Note 
that the wires are placed in spatial positions which do not 
correspond to the positions of hypothetical sources. 

 

Figure 7.  Conventional delay-and-sum beamforming. No apodization. 

 

Figure 8.  SPOC beamformer ouput. 

C. Anechoic Cyst 
An anechoic cyst was placed in front of the array and 

surrounded by ultrasonic scatterers. The cyst is round with a 
1mm radius. Simulation methods are the same of those 
described in the previous section, except that the hypothetical 
source sampling was now reduced to 100µm in azimuth. The 

whose elements are the amplitudes of sources located 
in the ROI. 

• Given x and V, SPOC recursively estimates the signal 
vector f. 

The main problems with this algorithm are the high 
computational cost, and the derivation of an accurate signal 
model. SPOC is shown schematically in figure 5. 

 

Figure 5.  Schematic representation of SPOC. 

III. SIMULATION METHODS AND RESULTS 

A. Beamplots 
For this and the successive section, single channel data was 

generated with Field II. We modeled a linear array operating at 
5MHz with roughly 70% fractional bandwidth (BW). The final 
sampling rate was 40MHz. While the Frost, Duvall, and SSB 
BFs were applied on RF data, SPOC was applied on complex 
demodulated IQ data. Another important difference is that with 
SPOC the transmit pulse is a plane wave. This allows a more 
efficient and compact description of the ROI. 
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results of this set of simulations are presented in figure 9 and 
10. The figures are in linear scale. The scatterers are placed in 
random positions within the image region. 

 

Figure 9.  Conventional delay-and-sum beamforming. No apodization. 

 

Figure 10.  SPOC beamformer output. 

IV. DISCUSSION 
A series of AB algorithms have been presented in this paper 

and their performances were compared to the conventional, 
data independent beamforming technique. 

As shown in figure 6, all the adaptive BFs achieve 
resolutions that are significantly better than that obtained by 
conventional BF. Furthermore, except for the Frost BF, we can 
observe a significant reduction in side lobe level. This figure 
also reveals that the SPOC significantly outperforms every 
other algorithms with a noise floor level of roughly –110dB. 
Also note that the super-resolution peak obtained with SPOC is 
a function of the hypothetical sources sampling; the finer the 
sources’ grid, the better the final resolution. The performance 
of the Frost algorithm is significantly limited in medical 
ultrasound. Unlike SONAR and RADAR, we operate in a 
limited statistics scenario where on-axis and off-axis signals are 
highly correlated. These factors conspire to reduce the 
performance of this algorithm. The Duvall BF, instead, takes 
into account the correlation between signal of interest and off-
axis signals using a subtractive process, as shown 
schematically in figure 3. From figure 6 it can be observed that 

the Duvall BF performs significantly better than the Frost BF, 
with a reduction of side lobe levels of roughly 20dB when 
compared to conventional BF. Finally, figure 6 shows that the 
SSB BF has similar performance to that of the Duvall BF. The 
main limitation of this algorithm is that narrow-band signals 
are originated from far-field. Obviously this is not a good 
assumption for medical ultrasound. Note that we have also 
performed additional simulations using a 64 elements array and 
found similar trends to those presented in figure 6. 

It is clear at this point that most of the AB algorithms 
previously described, tend to fail when applied to medical 
ultrasound data. This can be attributed to some or all of the 
following factors: we are operating in a near-field scenario, our 
signals are broadband, and we have limited statistical 
information available. However, SPOC is well suited for 
medical ultrasound since it requires neither a far-field/narrow-
band assumption nor second order statistics of the signals. 
Figures 7-10 compare the SPOC algorithm with the 
conventional BF on synthetic data depicting wires and 
anechoic cyst phantoms. The superiority of SPOC is clearly 
evident from those figures. Although not presented, we have 
performed additional simulations analyzing the stability of 
SPOC with respect to additive noise. We have found that down 
to a 10 dB/channel SNR the performance of SPOC remains 
excellent. The main limitation of this algorithm is the high 
computational complexity associated with it. We are currently 
investigating how to maintain the same performance with more 
efficient implementation. 

V. CONCLUSIONS 
Adaptive beamforming could help reduce clutter and yield 

super-resolution in medical ultrasound imaging. Simulation 
results show that SPOC significantly outperforms other AB 
algorithms. Additional work is required, however, to reduce the 
computational costs associated with SPOC. 
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